我想找出我的数据的每一列中NaN的数量。


当前回答

数零:

df[df == 0].count(axis=0)

计算NaN:

df.isnull().sum()

or

df.isna().sum()

其他回答

如果只是在pandas列中计算nan值,这里是一个快速的方法

import pandas as pd
## df1 as an example data frame 
## col1 name of column for which you want to calculate the nan values
sum(pd.isnull(df1['col1']))

希望这能有所帮助,

import pandas as pd
import numpy as np
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan],'c':[np.nan,2,np.nan], 'd':[np.nan,np.nan,np.nan]})

df.isnull().sum()/len(df) * 100

Thres = 40
(df.isnull().sum()/len(df) * 100 ) < Thres

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.count.html#pandas.Series.count

pandas.Series.count
Series.count(level=None)[source]

返回系列中非na /null观测值的个数

你可以从非nan值的计数中减去总长度:

count_nan = len(df) - df.count()

你应该根据你的数据计算时间。与isnull解相比,小级数的速度提高了3倍。

根据投票最多的答案,我们可以很容易地定义一个函数,给我们一个数据框架来预览每一列中缺失的值和缺失值的百分比:

def missing_values_table(df):
    mis_val = df.isnull().sum()
    mis_val_percent = 100 * df.isnull().sum() / len(df)
    mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1)
    mis_val_table_ren_columns = mis_val_table.rename(
    columns = {0 : 'Missing Values', 1 : '% of Total Values'})
    mis_val_table_ren_columns = mis_val_table_ren_columns[
        mis_val_table_ren_columns.iloc[:,1] != 0].sort_values(
    '% of Total Values', ascending=False).round(1)
    print ("Your selected dataframe has " + str(df.shape[1]) + " columns.\n"      
        "There are " + str(mis_val_table_ren_columns.shape[0]) +
            " columns that have missing values.")
    return mis_val_table_ren_columns