我想找出我的数据的每一列中NaN的数量。


当前回答

数零:

df[df == 0].count(axis=0)

计算NaN:

df.isnull().sum()

or

df.isna().sum()

其他回答

数零:

df[df == 0].count(axis=0)

计算NaN:

df.isnull().sum()

or

df.isna().sum()

可以使用df.iteritems()对数据帧进行循环。在for循环中设置一个条件来计算每列的NaN值百分比,并删除那些包含NaN值超过设置阈值的值:

for col, val in df.iteritems():
    if (df[col].isnull().sum() / len(val) * 100) > 30:
        df.drop(columns=col, inplace=True)
df.isnull().sum() 
      //type: <class 'pandas.core.series.Series'>

or

df.column_name.isnull().sum()
     //type: <type 'numpy.int64'>

对于第一部分,我们有多种方法计算NaN。

方法1计数,由于计数将忽略与大小不同的NaN

print(len(df) - df.count())

方法2:isnull / isna chain with sum

print(df.isnull().sum())
#print(df.isna().sum())

方法3 describe / info:注意这将输出' notull '值计数

print(df.describe())
#print(df.info())

方法。

print(np.count_nonzero(np.isnan(df.values),axis=0))

对于问题的第二部分,如果我们想要在thresh中删除列,我们可以尝试dropna

thresh, optional要求多个非na值。

Thresh = n # no null value require, you can also get the by int(x% * len(df))
df = df.dropna(thresh = Thresh, axis = 1)
import pandas as pd
import numpy as np

# example DataFrame
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})

# count the NaNs in a column
num_nan_a = df.loc[ (pd.isna(df['a'])) , 'a' ].shape[0]
num_nan_b = df.loc[ (pd.isna(df['b'])) , 'b' ].shape[0]

# summarize the num_nan_b
print(df)
print(' ')
print(f"There are {num_nan_a} NaNs in column a")
print(f"There are {num_nan_b} NaNs in column b")

给出输出:

     a    b
0  1.0  NaN
1  2.0  1.0
2  NaN  NaN

There are 1 NaNs in column a
There are 2 NaNs in column b