我想找出我的数据的每一列中NaN的数量。


当前回答

下面是按列计数Null值的代码:

df.isna().sum()

其他回答

下面是按列计数Null值的代码:

df.isna().sum()

在我的代码中使用@sushmit提出的解决方案。

同样的一种可能的变体也可以是

colNullCnt = []
for z in range(len(df1.cols)):
    colNullCnt.append([df1.cols[z], sum(pd.isnull(trainPd[df1.cols[z]]))])

这样做的好处是,它将返回df中每一列的结果。

.sum df.isnull () () 将给出缺失值的列和。

如果你想知道特定列中缺失值的总和,那么以下代码将起作用:

你可以试试:

In [1]: s = pd.DataFrame('a'=[1,2,5, np.nan, np.nan,3],'b'=[1,3, np.nan, np.nan,3,np.nan])

In [4]: s.isna().sum()   
Out[4]: out = {'a'=2, 'b'=3} # the number of NaN values for each column

如果需要nan的总和:

In [5]: s.isna().sum().sum()
Out[6]: out = 5  #the inline sum of Out[4] 

请使用以下方法计算特定的列数

dataframe.columnName.isnull().sum()