我想找出我的数据的每一列中NaN的数量。
当前回答
下面的代码将按降序打印所有Nan列。
df.isnull().sum().sort_values(ascending = False)
or
下面将按降序打印前15个Nan列。
df.isnull().sum().sort_values(ascending = False).head(15)
其他回答
如果你正在使用Jupyter笔记本,如何....
%%timeit
df.isnull().any().any()
or
%timeit
df.isnull().values.sum()
或者,数据中是否存在nan,如果有,在哪里?
df.isnull().any()
你可以试试:
In [1]: s = pd.DataFrame('a'=[1,2,5, np.nan, np.nan,3],'b'=[1,3, np.nan, np.nan,3,np.nan])
In [4]: s.isna().sum()
Out[4]: out = {'a'=2, 'b'=3} # the number of NaN values for each column
如果需要nan的总和:
In [5]: s.isna().sum().sum()
Out[6]: out = 5 #the inline sum of Out[4]
你可以使用value_counts方法打印np.nan的值
s.value_counts(dropna = False)[np.nan]
使用isna()方法(或者它的别名isnull(),这也兼容较旧的pandas版本< 0.21.0),然后求和来计算NaN值。其中一列:
>>> s = pd.Series([1,2,3, np.nan, np.nan])
>>> s.isna().sum() # or s.isnull().sum() for older pandas versions
2
对于一些列,这也适用:
>>> df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
>>> df.isna().sum()
a 1
b 2
dtype: int64
自从pandas 0.14.1以来,我的建议在value_counts方法中有一个关键字参数已经实现:
import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
for col in df:
print df[col].value_counts(dropna=False)
2 1
1 1
NaN 1
dtype: int64
NaN 2
1 1
dtype: int64
推荐文章
- Python 3.7数据类中的类继承
- 如何在PyTorch中初始化权重?
- 计数唯一的值在一列熊猫数据框架像在Qlik?
- 使用Pandas将列转换为行
- 从matplotlib中的颜色映射中获取单个颜色
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异