我想找出我的数据的每一列中NaN的数量。


当前回答

下面的代码将按降序打印所有Nan列。

df.isnull().sum().sort_values(ascending = False)

or

下面将按降序打印前15个Nan列。

df.isnull().sum().sort_values(ascending = False).head(15)

其他回答

根据给出的答案和一些改进,这是我的方法

def PercentageMissin(Dataset):
    """this function will return the percentage of missing values in a dataset """
    if isinstance(Dataset,pd.DataFrame):
        adict={} #a dictionary conatin keys columns names and values percentage of missin value in the columns
        for col in Dataset.columns:
            adict[col]=(np.count_nonzero(Dataset[col].isnull())*100)/len(Dataset[col])
        return pd.DataFrame(adict,index=['% of missing'],columns=adict.keys())
    else:
        raise TypeError("can only be used with panda dataframe")

请使用以下方法计算特定的列数

dataframe.columnName.isnull().sum()

如果只是在pandas列中计算nan值,这里是一个快速的方法

import pandas as pd
## df1 as an example data frame 
## col1 name of column for which you want to calculate the nan values
sum(pd.isnull(df1['col1']))

数零:

df[df == 0].count(axis=0)

计算NaN:

df.isnull().sum()

or

df.isna().sum()

希望这能有所帮助,

import pandas as pd
import numpy as np
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan],'c':[np.nan,2,np.nan], 'd':[np.nan,np.nan,np.nan]})

df.isnull().sum()/len(df) * 100

Thres = 40
(df.isnull().sum()/len(df) * 100 ) < Thres