我想找出我的数据的每一列中NaN的数量。


当前回答

下面的代码将按降序打印所有Nan列。

df.isnull().sum().sort_values(ascending = False)

or

下面将按降序打印前15个Nan列。

df.isnull().sum().sort_values(ascending = False).head(15)

其他回答

希望这能有所帮助,

import pandas as pd
import numpy as np
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan],'c':[np.nan,2,np.nan], 'd':[np.nan,np.nan,np.nan]})

df.isnull().sum()/len(df) * 100

Thres = 40
(df.isnull().sum()/len(df) * 100 ) < Thres

让我们假设df是一个熊猫数据框架。

然后,

df.isnull().sum(axis = 0)

这将给出每列中NaN值的数量。

如果你需要,每一行的NaN值,

df.isnull().sum(axis = 1)

你可以从非nan值的计数中减去总长度:

count_nan = len(df) - df.count()

你应该根据你的数据计算时间。与isnull解相比,小级数的速度提高了3倍。

假设您希望获得一个名为reviews的数据框架中称为price的列(系列)中缺失值(NaN)的数量

#import the dataframe
import pandas as pd

reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0)

用n_missing_prices作为变量来获取缺失的值,简单地做

n_missing_prices = sum(reviews.price.isnull())
print(n_missing_prices)

Sum是这里的关键方法,在我意识到Sum是在这种情况下使用的正确方法之前,我试图使用count

如果你需要得到非NA (non-None)和NA (None)计数在不同的组拉出groupby:

gdf = df.groupby(['ColumnToGroupBy'])

def countna(x):
    return (x.isna()).sum()

gdf.agg(['count', countna, 'size'])

这将返回每个组的非NA、NA和总条目数。