我想找出我的数据的每一列中NaN的数量。


当前回答

下面的代码将按降序打印所有Nan列。

df.isnull().sum().sort_values(ascending = False)

or

下面将按降序打印前15个Nan列。

df.isnull().sum().sort_values(ascending = False).head(15)

其他回答

如果你需要得到非NA (non-None)和NA (None)计数在不同的组拉出groupby:

gdf = df.groupby(['ColumnToGroupBy'])

def countna(x):
    return (x.isna()).sum()

gdf.agg(['count', countna, 'size'])

这将返回每个组的非NA、NA和总条目数。

可以使用df.iteritems()对数据帧进行循环。在for循环中设置一个条件来计算每列的NaN值百分比,并删除那些包含NaN值超过设置阈值的值:

for col, val in df.iteritems():
    if (df[col].isnull().sum() / len(val) * 100) > 30:
        df.drop(columns=col, inplace=True)

如果你正在使用Jupyter笔记本,如何....

 %%timeit
 df.isnull().any().any()

or

 %timeit 
 df.isnull().values.sum()

或者,数据中是否存在nan,如果有,在哪里?

 df.isnull().any()

数零:

df[df == 0].count(axis=0)

计算NaN:

df.isnull().sum()

or

df.isna().sum()

.sum df.isnull () () 将给出缺失值的列和。

如果你想知道特定列中缺失值的总和,那么以下代码将起作用: