如何从列表中删除重复项,同时保持顺序?使用集合删除重复项会破坏原始顺序。 是否有内置的或python的习语?
当前回答
Pandas用户应该查看Pandas .unique。
>>> import pandas as pd
>>> lst = [1, 2, 1, 3, 3, 2, 4]
>>> pd.unique(lst)
array([1, 2, 3, 4])
该函数返回一个NumPy数组。如果需要,可以使用tolist方法将其转换为列表。
其他回答
我不是在找死马(这个问题已经很老了,已经有很多好的答案了),但是这里有一个使用熊猫的解决方案,在很多情况下都非常快,而且使用起来非常简单。
import pandas as pd
my_list = [0, 1, 2, 3, 4, 1, 2, 3, 5]
>>> pd.Series(my_list).drop_duplicates().tolist()
# Output:
# [0, 1, 2, 3, 4, 5]
使用_sorted_ a numpy数组的相对有效方法:
b = np.array([1,3,3, 8, 12, 12,12])
numpy.hstack([b[0], [x[0] for x in zip(b[1:], b[:-1]) if x[0]!=x[1]]])
输出:
array([ 1, 3, 8, 12])
sequence = ['1', '2', '3', '3', '6', '4', '5', '6']
unique = []
[unique.append(item) for item in sequence if item not in unique]
unique→[1、(2)、(3)、(6)、(4)、(5)]
如果你需要一个班轮,那么这可能会有帮助:
reduce(lambda x, y: x + y if y[0] not in x else x, map(lambda x: [x],lst))
... 应该工作,但纠正我,如果我错了
如果你经常使用pandas,并且美学优先于性能,那么考虑内置函数pandas. series .drop_duplicate:
import pandas as pd
import numpy as np
uniquifier = lambda alist: pd.Series(alist).drop_duplicates().tolist()
# from the chosen answer
def f7(seq):
seen = set()
seen_add = seen.add
return [ x for x in seq if not (x in seen or seen_add(x))]
alist = np.random.randint(low=0, high=1000, size=10000).tolist()
print uniquifier(alist) == f7(alist) # True
时间:
In [104]: %timeit f7(alist)
1000 loops, best of 3: 1.3 ms per loop
In [110]: %timeit uniquifier(alist)
100 loops, best of 3: 4.39 ms per loop
推荐文章
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 数组与列表的性能
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- Postgres唯一约束与索引
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列