如何从列表中删除重复项,同时保持顺序?使用集合删除重复项会破坏原始顺序。 是否有内置的或python的习语?
当前回答
这里有一些替代选项:http://www.peterbe.com/plog/uniqifiers-benchmark
最快的一个:
def f7(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
为什么要赋值。添加到seen_add而不是只调用see . Add ?Python是一种动态语言,解析可见。每次迭代添加比解析一个局部变量代价更大。观察。Add可能会在迭代之间发生更改,而运行时还不够聪明,无法排除这种情况。为了安全起见,它必须每次检查对象。
如果您计划在同一个数据集上大量使用这个函数,那么使用一个有序集可能会更好:http://code.activestate.com/recipes/528878/
O(1)每次操作的插入、删除和成员检查。
(小额外注意:see .add()总是返回None,所以以上值只是作为一种尝试更新集合的方式,而不是逻辑测试的组成部分。)
其他回答
对于不可哈希类型(例如列表的列表),基于MizardX的:
def f7_noHash(seq)
seen = set()
return [ x for x in seq if str( x ) not in seen and not seen.add( str( x ) )]
最佳解决方案因Python版本和环境限制而异:
Python 3.7+(大多数解释器支持3.6,作为实现细节):
在PyPy 2.5.0中首次引入,并在CPython 3.6中作为实现细节采用,在Python 3.7中成为语言保证之前,plain dict是插入顺序的,甚至比collections.OrderedDict(也是在CPython 3.5中实现的C)更有效。到目前为止,最快的解决方案也是最简单的:
>>> items = [1, 2, 0, 1, 3, 2]
>>> list(dict.fromkeys(items)) # Or [*dict.fromkeys(items)] if you prefer
[1, 2, 0, 3]
像list(set(items))一样,这将所有工作推到C层(在CPython上),但由于dicts是插入顺序的,dict.fromkeys不会失去顺序。它比list(set(items))慢(通常需要50-100%的时间),但比任何其他保持顺序的解决方案快得多(在listcomp中使用set需要大约一半的时间)。
重要提示:more_itertools的unique_everseen解决方案(见下面)在惰性和支持非哈希输入项方面有一些独特的优势;如果您需要这些特性,那么这是唯一可行的解决方案。
Python 3.5(以及性能不重要的所有旧版本)
正如Raymond指出的,在CPython 3.5中,OrderedDict是用C实现的,丑陋的列表理解比OrderedDict.fromkeys要慢(除非你真的需要在结尾使用列表——即使这样,也只有在输入非常短的情况下)。因此,在性能和可读性上,CPython 3.5的最佳解决方案是OrderedDict等价于3.6+使用普通dict:
>>> from collections import OrderedDict
>>> items = [1, 2, 0, 1, 3, 2]
>>> list(OrderedDict.fromkeys(items))
[1, 2, 0, 3]
在CPython 3.4及更早版本上,这将比其他一些解决方案慢,所以如果分析显示您需要更好的解决方案,请继续阅读。
Python 3.4或更早版本,如果性能很关键且第三方模块是可接受的
正如@abarnert指出的那样,more_itertools库(pip install more_itertools)包含一个unique_everseen函数,该函数是为了解决这个问题而构建的,而不会在列表推导中出现任何不可读(not seen.add)的变化。这也是最快的解决方案:
>>> from more_itertools import unique_everseen
>>> items = [1, 2, 0, 1, 3, 2]
>>> list(unique_everseen(items))
[1, 2, 0, 3]
只是一个简单的库导入,没有黑客。
该模块正在调整itertools配方unique_everseen,它看起来像:
def unique_everseen(iterable, key=None):
"List unique elements, preserving order. Remember all elements ever seen."
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
# unique_everseen('ABBCcAD', str.lower) --> A B C D
seen = set()
seen_add = seen.add
if key is None:
for element in filterfalse(seen.__contains__, iterable):
seen_add(element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen_add(k)
yield element
但与itertools食谱不同的是,它支持不可哈希项(以性能为代价;如果iterable中的所有元素都是不可哈希的,则算法变成O(n²)vs. O(n)(如果它们都是可哈希的)。
重要提示:与这里所有其他解决方案不同,unique_everseen可以惰性使用;峰值内存使用将是相同的(最终,底层集合增长到相同的大小),但如果不列出结果,只需迭代它,就能够在找到唯一项时处理它们,而不是等到整个输入重复数据删除后才处理第一个唯一项。
Python 3.4及更早版本,如果性能非常关键且第三方模块不可用
你有两个选择:
复制并粘贴unique_everseen配方到您的代码中,并在上面的more_itertools示例中使用它 使用丑陋的hack,允许一个listcomp检查和更新一个集,以跟踪所看到的内容: Seen = set() [x for x in seq if x not in seen and not seen.add(x)] 以依赖丑陋的黑客为代价: 不是seen.add (x) 这取决于一个事实。add是一个原地方法,总是返回None,所以not None的值为True。
Note that all of the solutions above are O(n) (save calling unique_everseen on an iterable of non-hashable items, which is O(n²), while the others would fail immediately with a TypeError), so all solutions are performant enough when they're not the hottest code path. Which one to use depends on which versions of the language spec/interpreter/third-party modules you can rely on, whether or not performance is critical (don't assume it is; it usually isn't), and most importantly, readability (because if the person who maintains this code later ends up in a murderous mood, your clever micro-optimization probably wasn't worth it).
只是从外部module1中添加这样一个功能的另一个(非常高性能的)实现:
>>> from iteration_utilities import unique_everseen
>>> lst = [1,1,1,2,3,2,2,2,1,3,4]
>>> list(unique_everseen(lst))
[1, 2, 3, 4]
计时
我做了一些计时(Python 3.6),这些表明它比我测试的所有其他替代方案都快,包括OrderedDict.fromkeys, f7和more_itertools.unique_everseen:
%matplotlib notebook
from iteration_utilities import unique_everseen
from collections import OrderedDict
from more_itertools import unique_everseen as mi_unique_everseen
def f7(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
def iteration_utilities_unique_everseen(seq):
return list(unique_everseen(seq))
def more_itertools_unique_everseen(seq):
return list(mi_unique_everseen(seq))
def odict(seq):
return list(OrderedDict.fromkeys(seq))
from simple_benchmark import benchmark
b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
{2**i: list(range(2**i)) for i in range(1, 20)},
'list size (no duplicates)')
b.plot()
为了确保这一点,我还做了一个重复的测试,看看是否有区别:
import random
b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
{2**i: [random.randint(0, 2**(i-1)) for _ in range(2**i)] for i in range(1, 20)},
'list size (lots of duplicates)')
b.plot()
一个只包含一个值:
b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
{2**i: [1]*(2**i) for i in range(1, 20)},
'list size (only duplicates)')
b.plot()
在所有这些情况下,iteration_utilities。Unique_everseen函数是最快的(在我的电脑上)。
这iteration_utilities。unique_everseen函数也可以处理输入中的不可哈希值(但是当值是可哈希值时,性能是O(n*n)而不是O(n))。
>>> lst = [{1}, {1}, {2}, {1}, {3}]
>>> list(unique_everseen(lst))
[{1}, {2}, {3}]
1免责声明:我是该软件包的作者。
这里有一些替代选项:http://www.peterbe.com/plog/uniqifiers-benchmark
最快的一个:
def f7(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
为什么要赋值。添加到seen_add而不是只调用see . Add ?Python是一种动态语言,解析可见。每次迭代添加比解析一个局部变量代价更大。观察。Add可能会在迭代之间发生更改,而运行时还不够聪明,无法排除这种情况。为了安全起见,它必须每次检查对象。
如果您计划在同一个数据集上大量使用这个函数,那么使用一个有序集可能会更好:http://code.activestate.com/recipes/528878/
O(1)每次操作的插入、删除和成员检查。
(小额外注意:see .add()总是返回None,所以以上值只是作为一种尝试更新集合的方式,而不是逻辑测试的组成部分。)
你可以做一个丑陋的列表理解黑客。
[l[i] for i in range(len(l)) if l.index(l[i]) == i]
推荐文章
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 数组与列表的性能
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- Postgres唯一约束与索引
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列