如何从列表中删除重复项,同时保持顺序?使用集合删除重复项会破坏原始顺序。 是否有内置的或python的习语?
当前回答
一行列表的理解:
values_non_duplicated = [value for index, value in enumerate(values) if value not in values[ : index]]
其他回答
最佳解决方案因Python版本和环境限制而异:
Python 3.7+(大多数解释器支持3.6,作为实现细节):
在PyPy 2.5.0中首次引入,并在CPython 3.6中作为实现细节采用,在Python 3.7中成为语言保证之前,plain dict是插入顺序的,甚至比collections.OrderedDict(也是在CPython 3.5中实现的C)更有效。到目前为止,最快的解决方案也是最简单的:
>>> items = [1, 2, 0, 1, 3, 2]
>>> list(dict.fromkeys(items)) # Or [*dict.fromkeys(items)] if you prefer
[1, 2, 0, 3]
像list(set(items))一样,这将所有工作推到C层(在CPython上),但由于dicts是插入顺序的,dict.fromkeys不会失去顺序。它比list(set(items))慢(通常需要50-100%的时间),但比任何其他保持顺序的解决方案快得多(在listcomp中使用set需要大约一半的时间)。
重要提示:more_itertools的unique_everseen解决方案(见下面)在惰性和支持非哈希输入项方面有一些独特的优势;如果您需要这些特性,那么这是唯一可行的解决方案。
Python 3.5(以及性能不重要的所有旧版本)
正如Raymond指出的,在CPython 3.5中,OrderedDict是用C实现的,丑陋的列表理解比OrderedDict.fromkeys要慢(除非你真的需要在结尾使用列表——即使这样,也只有在输入非常短的情况下)。因此,在性能和可读性上,CPython 3.5的最佳解决方案是OrderedDict等价于3.6+使用普通dict:
>>> from collections import OrderedDict
>>> items = [1, 2, 0, 1, 3, 2]
>>> list(OrderedDict.fromkeys(items))
[1, 2, 0, 3]
在CPython 3.4及更早版本上,这将比其他一些解决方案慢,所以如果分析显示您需要更好的解决方案,请继续阅读。
Python 3.4或更早版本,如果性能很关键且第三方模块是可接受的
正如@abarnert指出的那样,more_itertools库(pip install more_itertools)包含一个unique_everseen函数,该函数是为了解决这个问题而构建的,而不会在列表推导中出现任何不可读(not seen.add)的变化。这也是最快的解决方案:
>>> from more_itertools import unique_everseen
>>> items = [1, 2, 0, 1, 3, 2]
>>> list(unique_everseen(items))
[1, 2, 0, 3]
只是一个简单的库导入,没有黑客。
该模块正在调整itertools配方unique_everseen,它看起来像:
def unique_everseen(iterable, key=None):
"List unique elements, preserving order. Remember all elements ever seen."
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
# unique_everseen('ABBCcAD', str.lower) --> A B C D
seen = set()
seen_add = seen.add
if key is None:
for element in filterfalse(seen.__contains__, iterable):
seen_add(element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen_add(k)
yield element
但与itertools食谱不同的是,它支持不可哈希项(以性能为代价;如果iterable中的所有元素都是不可哈希的,则算法变成O(n²)vs. O(n)(如果它们都是可哈希的)。
重要提示:与这里所有其他解决方案不同,unique_everseen可以惰性使用;峰值内存使用将是相同的(最终,底层集合增长到相同的大小),但如果不列出结果,只需迭代它,就能够在找到唯一项时处理它们,而不是等到整个输入重复数据删除后才处理第一个唯一项。
Python 3.4及更早版本,如果性能非常关键且第三方模块不可用
你有两个选择:
复制并粘贴unique_everseen配方到您的代码中,并在上面的more_itertools示例中使用它 使用丑陋的hack,允许一个listcomp检查和更新一个集,以跟踪所看到的内容: Seen = set() [x for x in seq if x not in seen and not seen.add(x)] 以依赖丑陋的黑客为代价: 不是seen.add (x) 这取决于一个事实。add是一个原地方法,总是返回None,所以not None的值为True。
Note that all of the solutions above are O(n) (save calling unique_everseen on an iterable of non-hashable items, which is O(n²), while the others would fail immediately with a TypeError), so all solutions are performant enough when they're not the hottest code path. Which one to use depends on which versions of the language spec/interpreter/third-party modules you can rely on, whether or not performance is critical (don't assume it is; it usually isn't), and most importantly, readability (because if the person who maintains this code later ends up in a murderous mood, your clever micro-optimization probably wasn't worth it).
这里有一些替代选项:http://www.peterbe.com/plog/uniqifiers-benchmark
最快的一个:
def f7(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
为什么要赋值。添加到seen_add而不是只调用see . Add ?Python是一种动态语言,解析可见。每次迭代添加比解析一个局部变量代价更大。观察。Add可能会在迭代之间发生更改,而运行时还不够聪明,无法排除这种情况。为了安全起见,它必须每次检查对象。
如果您计划在同一个数据集上大量使用这个函数,那么使用一个有序集可能会更好:http://code.activestate.com/recipes/528878/
O(1)每次操作的插入、删除和成员检查。
(小额外注意:see .add()总是返回None,所以以上值只是作为一种尝试更新集合的方式,而不是逻辑测试的组成部分。)
l = [1,2,2,3,3,...]
n = []
n.extend(ele for ele in l if ele not in set(n))
一个生成器表达式,它使用集合的O(1)查找来确定是否在新列表中包含元素。
如果你经常使用pandas,并且美学优先于性能,那么考虑内置函数pandas. series .drop_duplicate:
import pandas as pd
import numpy as np
uniquifier = lambda alist: pd.Series(alist).drop_duplicates().tolist()
# from the chosen answer
def f7(seq):
seen = set()
seen_add = seen.add
return [ x for x in seq if not (x in seen or seen_add(x))]
alist = np.random.randint(low=0, high=1000, size=10000).tolist()
print uniquifier(alist) == f7(alist) # True
时间:
In [104]: %timeit f7(alist)
1000 loops, best of 3: 1.3 ms per loop
In [110]: %timeit uniquifier(alist)
100 loops, best of 3: 4.39 ms per loop
我不是在找死马(这个问题已经很老了,已经有很多好的答案了),但是这里有一个使用熊猫的解决方案,在很多情况下都非常快,而且使用起来非常简单。
import pandas as pd
my_list = [0, 1, 2, 3, 4, 1, 2, 3, 5]
>>> pd.Series(my_list).drop_duplicates().tolist()
# Output:
# [0, 1, 2, 3, 4, 5]
推荐文章
- 把if-elif-else语句放在一行中?
- 我如何结合两个数据框架?
- 如何计数列表中唯一值的出现
- 为什么Pycharm的检查人员抱怨“d ={}”?
- 如何JSON序列化集?
- 在python中,年龄从出生日期开始
- 使用pip安装SciPy
- 在Python中,我应该如何测试变量是否为None, True或False
- 如何在Python中从毫秒创建datetime ?
- 检查字符串是否包含字符串列表中的元素
- 如何解窝(爆炸)在一个熊猫数据帧列,成多行
- 如何使用pip安装opencv ?
- 在pip冻结命令的输出中“pkg-resources==0.0.0”是什么
- 格式y轴为百分比
- 熊猫连接问题:列重叠但没有指定后缀