周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

有一种巧妙的数据结构,它使用数组来保存元素的数据,但数组在链接列表/数组中链接在一起。

这确实具有这样的优点,即对元素的迭代非常快(比纯链接列表方法更快),并且在内存和/或(去)分配中移动带有元素的数组的成本最低。(正因为如此,此数据结构对于模拟工作非常有用)。

我从这里知道:

http://software.intel.com/en-us/blogs/2010/03/26/linked-list-verses-array/

“……并且一个额外的数组被分配并链接到粒子数组的单元格列表中。这在某些方面类似于TBB实现其并发容器的方式。”(这是关于链接列表与数组的性能)

其他回答

我喜欢treaps——这是一个简单而有效的想法,即在二进制搜索树上叠加具有随机优先级的堆结构,以平衡它。

PATRICIA-检索字母数字编码信息的实用算法,D.R.Morrison(1968)。

PATRICIA树与Trie相关。Tries的问题是,当密钥集稀疏时,即当实际密钥形成潜在密钥集的一个子集时,Trie中的许多(大多数)内部节点只有一个后代,这是非常常见的情况。这导致Trie具有较高的空间复杂性。

http://www.csse.monash.edu.au/~合金/瓷砖AlgdS/树/PATRICIA/

看看手指树,特别是如果你是前面提到的纯函数数据结构的粉丝。它们是持久序列的功能表示,支持以摊销的恒定时间访问末端,以及以较小片段的大小按时间对数连接和拆分。

根据原文:

我们的函数2-3指树是Okasaki(1998)介绍的一种通用设计技术的一个实例,称为隐式递归减速。我们已经注意到,这些树是他的隐式deque结构的扩展,用2-3个节点替换对,以提供高效连接和拆分所需的灵活性。

手指树可以用幺半群参数化,使用不同的幺半群将导致树的不同行为。这使手指树可以模拟其他数据结构。

Splash桌很棒。它们就像一个普通的哈希表,只是它们保证了恒定的时间查找,并且可以处理90%的利用率而不损失性能。它们是布谷鸟哈希(也是一种很棒的数据结构)的推广。它们看起来确实有专利,但和大多数纯软件专利一样,我不会太担心。

三元搜索树

快速前缀搜索(用于增量自动完成等)部分匹配(当您想查找字符串X汉明距离内的所有单词时)通配符搜索

很容易实施。