周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

三元搜索树

快速前缀搜索(用于增量自动完成等)部分匹配(当您想查找字符串X汉明距离内的所有单词时)通配符搜索

很容易实施。

其他回答

使用2个堆栈实现的队列非常节省空间(与使用至少有1个额外指针/引用开销的链接列表不同)。

如何使用两个堆栈实现队列?

当排队人数很大时,这对我来说效果很好。如果我在一个指针上节省了8个字节,这意味着拥有百万条目的队列节省了大约8MB的RAM。

Gerth Stølting Brodal和Chris Okasaki的自助倾斜二项式堆:

尽管它们的名字很长,但即使在函数设置中,它们也提供了渐近最优的堆操作。

O(1)尺寸,接头,插入件,最小值O(log n)删除最小值

注意,union需要O(1)而不是O(log n)时间,这与数据结构教科书中通常包含的更为知名的堆(如左派堆)不同。与斐波那契堆不同,这些渐近线是最坏的情况,而不是摊销,即使持续使用!

Haskell中有多种实现。

在Brodal提出了一个具有相同渐近线的命令堆之后,它们由Brodal和Okasaki共同导出。

当我读到一些与RMQ和LCA相关的算法时,我偶然发现了另一种数据结构笛卡尔树。在笛卡尔树中,两个节点之间的最低共同祖先是它们之间的最小节点。将RMQ问题转换为LCA非常有用。

Scapegoat树。普通二叉树的一个典型问题是它们变得不平衡(例如,当按升序插入键时)

平衡二叉树(AKA AVL树)在每次插入后都会浪费大量时间进行平衡。

红黑树保持平衡,但每个节点都需要额外的存储空间。

Scapegoat树像红黑树一样保持平衡,但不需要任何额外的存储。他们通过在每次插入后分析树并进行微小调整来实现这一点。看见http://en.wikipedia.org/wiki/Scapegoat_tree.

Hinze和Paterson的2-3手指树是一种功能强大的数据结构瑞士军刀,具有很好的渐近线,适用于各种操作。虽然复杂,但它们比之前的Kaplan和Tarjan通过递归减速实现的持久列表的命令式结构简单得多。

它们作为一个可链接的deque,O(1)访问任意一端,O(log-min(n,m))追加,并提供O(log-main(n),length-n))索引,直接访问序列的任何部分上的单形前缀和。

实现存在于Haskell、Coq、F#、Scala、Java、C、Clojure、C#和其他语言中。

您可以使用它们来实现优先级搜索队列、区间映射、具有快速头部访问的绳索、映射、集合、可链接序列或几乎任何结构,您可以将其表述为在快速可链接/可索引序列上收集单形结果。

我还有一些幻灯片描述了它们的派生和使用。