周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

角落缝合的数据结构。根据总结:

拐角缝合是一种用于表示矩形二维对象。看起来特别适合VLSI交互式编辑系统布局。数据结构有两个重要特征:第一,空白明确表示;第二,矩形区域被缝合在他们的角落像一个拼缝被子。此组织快速算法的结果(线性时间或更好),创建、删除、拉伸和压实。算法如下以简化模型VLSI电路和存储器结构要求如下讨论。测量结果表明拐角缝合要求大约三倍尽可能简单的存储空间代表。

其他回答

优先级取消队列比维护两个不同排序的独立优先级队列更便宜。http://www.alexandria.ucsb.edu/middleware/javadoc/edu/ucsb/adl/middleware/PriorityDeque.htmlhttp://cphstl.dk/Report/Priority-deque/cphstl-report-2001-14.pdf

其他人已经提出了Burkhard Keller Trees,但我想我可能会再次提及它们,以便插入我自己的实现

http://well-adjusted.de/mspace.py/index.html

周围有更快的实现(参见ActiveState的Python配方或其他语言的实现),但我认为/希望我的代码有助于理解这些数据结构。

顺便说一句,BK和VP树可用于搜索类似字符串。只要距离函数满足几个条件(正、对称、三角形不等式),就可以对任意对象进行相似性搜索。

成对堆是一种堆数据结构,具有相对简单的实现和出色的实际摊余性能。

Van Emde Boas树。我甚至有一个C++实现,最多支持2^20个整数。

我很惊讶没有人提到Merkle树(即哈希树)。

在许多情况下(P2P程序、数字签名),当您只有部分文件可用时,您需要验证整个文件的哈希。