周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

我很惊讶没有人提到Merkle树(即哈希树)。

在许多情况下(P2P程序、数字签名),当您只有部分文件可用时,您需要验证整个文件的哈希。

其他回答

我很惊讶没有人提到Merkle树(即哈希树)。

在许多情况下(P2P程序、数字签名),当您只有部分文件可用时,您需要验证整个文件的哈希。

铲斗大队

它们在Apache中被广泛使用。基本上,它们是一个在环中围绕自身循环的链接列表。我不确定它们是否在Apache和Apache模块之外使用,但它们适合作为一种很酷但鲜为人知的数据结构。桶是一些任意数据的容器,桶大队是桶的集合。其思想是,您希望能够在结构中的任何点修改和插入数据。

假设您有一个bucket旅,其中包含一个html文档,每个bucket包含一个字符。您希望将所有<和>符号转换为&lt;并且&gt;实体。当您遇到<或>符号时,bucket旅允许您在旅中插入一些额外的bucket,以适应实体所需的额外字符。因为铲斗大队在一个环中,您可以向后或向前插入。这比使用简单的缓冲区要容易得多(在C语言中)。

关于铲斗大队的一些参考信息如下:

Apache Bucket旅参考

Buckets和Brigades简介

min-max堆是实现双端优先级队列的堆的变体。它通过简单地更改堆属性来实现这一点:如果偶数(奇数)级别上的每个元素都小于(大于)所有子级和孙子级,则称树为最小-最大排序。级别从1开始编号。

http://internet512.chonbuk.ac.kr/datastructure/heap/img/heap8.jpg

我认为循环排序是一种非常整洁的排序算法。

这是一种排序算法,用于最小化写入总数。这在处理闪存时尤其有用,因为闪存的寿命与写入量成正比。这是维基百科的文章,但我建议转到第一个链接。(视觉效果不错!)

二进制决策图(我最喜欢的数据结构,擅长表示布尔方程并解决它们。适用于很多事情)堆(一个树,其中节点的父节点总是与节点的子节点保持某种关系,例如,节点的父级总是大于它的每个子节点(最大堆))优先级队列(实际上只有最小堆和最大堆,有助于维护大量元素的顺序,例如,应该首先删除具有最高值的项目)哈希表(具有各种查找策略和桶溢出处理)平衡的二进制搜索树(每种都有自己的优点)RB树(当以有序方式插入、查找、删除和迭代时,总体良好)Avl树(查找速度比RB快,但其他方面与RB非常相似)Splay树(当最近使用的节点可能被重用时,查找速度更快)融合树(利用快速乘法获得更好的查找时间)B+树(用于数据库和文件系统中的索引,当从索引读取/写入索引的延迟很长时非常有效)。空间索引(非常适合查询点/圆/矩形/线/立方体是否彼此接近或包含在其中)BSP树四叉树八叉树范围树许多相似但略有不同的树木,不同的尺寸区间树(很好地找到重叠区间,线性)图邻接列表(基本上是边的列表)邻接矩阵(表示图的有向边的表,每边一个位。对于图遍历非常快速)

这些是我能想到的。维基百科上还有更多关于数据结构的内容