周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

看看唐纳德·克努思(Donald Knuth)展示的侧面堆。

http://stanford-online.stanford.edu/seminars/knuth/071203-knuth-300.asx

其他回答

min-max堆是实现双端优先级队列的堆的变体。它通过简单地更改堆属性来实现这一点:如果偶数(奇数)级别上的每个元素都小于(大于)所有子级和孙子级,则称树为最小-最大排序。级别从1开始编号。

http://internet512.chonbuk.ac.kr/datastructure/heap/img/heap8.jpg

增量列表/增量队列在cron或事件模拟器等程序中使用,以确定下一个事件何时应该触发。http://everything2.com/title/delta+列表http://www.cs.iastate.edu/~cs554/lec_notes/delta_clock.pdf

其他人已经提出了Burkhard Keller Trees,但我想我可能会再次提及它们,以便插入我自己的实现

http://well-adjusted.de/mspace.py/index.html

周围有更快的实现(参见ActiveState的Python配方或其他语言的实现),但我认为/希望我的代码有助于理解这些数据结构。

顺便说一句,BK和VP树可用于搜索类似字符串。只要距离函数满足几个条件(正、对称、三角形不等式),就可以对任意对象进行相似性搜索。

当我读到一些与RMQ和LCA相关的算法时,我偶然发现了另一种数据结构笛卡尔树。在笛卡尔树中,两个节点之间的最低共同祖先是它们之间的最小节点。将RMQ问题转换为LCA非常有用。

二项式堆有很多有趣的财产,其中最有用的是合并。