周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

我真的很喜欢间隔树。它们允许您获取一组时间间隔(即开始/结束时间或其他时间),并查询哪些时间间隔包含给定时间,或哪些时间间隔在给定时间段内“活动”。查询可以在O(log n)中完成,预处理是O(n log n)。

其他回答

多边形网格的半边数据结构和翼边。

适用于计算几何算法。

尝试,也称为前缀树或临界位树,已经存在了40多年,但仍然相对未知。在“TRASH-一个动态LC trie和哈希数据结构”中描述了一个非常酷的trys用法,它将trie与哈希函数结合在一起。

Van Emde Boas树

我想知道它们为什么很酷会很有用。一般来说,“为什么”这个问题是最重要的;)

我的答案是,他们给你O(log-logn)字典,其中包含{1..n}个键,而与使用的键的数量无关。就像重复减半得到O(log n)一样,重复平方得到O(log-log n),这就是vEB树中发生的情况。

您可以使用最小堆来在恒定时间内找到最小元素,或者使用最大堆来找到最大元素。但如果你想同时做这两项操作呢?可以使用“最小值-最大值”在恒定时间内执行这两个操作。它通过使用最小-最大排序来工作:在连续树级别之间交替进行最小和最大堆比较。

Kd-Trees是实时光线跟踪中使用的空间数据结构,它的缺点是需要裁剪与不同空间交叉的三角形。一般来说,BVH更快,因为它们更轻。MX-CIF四叉树,通过将规则四叉树与四叉树边缘的二叉树组合,存储边界框而不是任意点集。HAMT,由于所涉及的常数,访问时间通常超过O(1)个哈希图的分层哈希图。反向索引,在搜索引擎界非常有名,因为它用于快速检索与不同搜索词相关的文档。

大多数(如果不是全部)记录在NIST算法和数据结构词典中