周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

跳过列表非常整洁。

维基百科跳过列表是一种概率数据结构,基于多个并行、排序的链接列表,其效率与二进制搜索树相当(大多数操作的顺序日志n平均时间)。

它们可以作为平衡树的替代(使用概率平衡而不是严格执行平衡)。它们很容易实现,而且比红黑树更快。我认为他们应该在每一个优秀的程序员工具箱中。

如果你想深入了解跳过列表,这里有一个麻省理工学院算法简介讲座视频的链接。

此外,这里还有一个Java小程序,直观地演示了跳过列表。

其他回答

绳子:这是一种允许廉价的前缀、子字符串、中间插入和附加的字符串。我真的只使用过一次,但其他结构都不够。常规的字符串和数组前缀对于我们所需要做的事情来说太昂贵了,而且逆转一切都是不可能的。

芬威克树。这是一种数据结构,用于计算向量中两个给定的子索引i和j之间的所有元素的总和。简单的解决方案是,从开始时就预先计算总和,不允许更新项目(必须做O(n)工作才能跟上)。

Fenwick Trees允许您在O(logn)中更新和查询,它的工作方式非常简单。芬威克的原始论文对这一点做了很好的解释,可以在这里免费获得:

http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol24/issue3/spe884.pdf

它的父亲RQM树也很酷:它允许您保存关于向量的两个索引之间的最小元素的信息,它还可以在O(logn)更新和查询中工作。我喜欢先教RQM,然后教芬威克树。

BK树或Burkhard Keller树是一种基于树的数据结构,可用于快速查找字符串的近似匹配项。

Scapegoat树。普通二叉树的一个典型问题是它们变得不平衡(例如,当按升序插入键时)

平衡二叉树(AKA AVL树)在每次插入后都会浪费大量时间进行平衡。

红黑树保持平衡,但每个节点都需要额外的存储空间。

Scapegoat树像红黑树一样保持平衡,但不需要任何额外的存储。他们通过在每次插入后分析树并进行微小调整来实现这一点。看见http://en.wikipedia.org/wiki/Scapegoat_tree.

我不确定这个数据结构是否有名字,但是提议的包含在Boost中的tokenmap数据结构有点有趣。这是一个动态调整大小的映射,其中查找不仅是O(1),而且是简单的数组访问。我写了关于这个数据结构的大部分背景材料,其中描述了它如何工作的基本原理。

操作系统使用类似于tokenmap的东西来将文件或资源句柄映射到表示文件或资源的数据结构。