周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

其他人已经提出了Burkhard Keller Trees,但我想我可能会再次提及它们,以便插入我自己的实现

http://well-adjusted.de/mspace.py/index.html

周围有更快的实现(参见ActiveState的Python配方或其他语言的实现),但我认为/希望我的代码有助于理解这些数据结构。

顺便说一句,BK和VP树可用于搜索类似字符串。只要距离函数满足几个条件(正、对称、三角形不等式),就可以对任意对象进行相似性搜索。

其他回答

我不确定这个数据结构是否有名字,但是提议的包含在Boost中的tokenmap数据结构有点有趣。这是一个动态调整大小的映射,其中查找不仅是O(1),而且是简单的数组访问。我写了关于这个数据结构的大部分背景材料,其中描述了它如何工作的基本原理。

操作系统使用类似于tokenmap的东西来将文件或资源句柄映射到表示文件或资源的数据结构。

Fast Compact尝试:

Judy数组:用于位、整数和字符串的非常快速且内存高效的有序稀疏动态数组。Judy数组比任何二进制搜索树都更快、更节省内存。HAT-trie:一种基于缓存的字符串数据结构基于磁盘的字符串管理的B次尝试

尝试,也称为前缀树或临界位树,已经存在了40多年,但仍然相对未知。在“TRASH-一个动态LC trie和哈希数据结构”中描述了一个非常酷的trys用法,它将trie与哈希函数结合在一起。

我认为标准数据结构的无锁替代方案,即无锁队列、堆栈和列表被忽略了。随着并发性成为更高的优先级,它们变得越来越重要,并且比使用互斥或锁来处理并发读/写更令人钦佩。

以下是一些链接http://www.cl.cam.ac.uk/research/srg/netos/lock-free/http://www.research.ibm.com/people/m/michael/podc-1996.pdf[PDF链接]http://www.boyet.com/Articles/LockfreeStack.html

迈克·阿克顿(Mike Acton)的博客中有一些关于无锁设计和方法的优秀文章