周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

霍夫曼树-用于压缩。

其他回答

Zippers——数据结构的衍生物,可以修改结构,使其具有“光标”的自然概念——当前位置。这些非常有用,因为它们保证了标记不会超出范围——例如在xmonad窗口管理器中使用,以跟踪哪个窗口已聚焦。

令人惊讶的是,您可以通过将微积分技术应用于原始数据结构的类型来派生它们!

成对堆是一种堆数据结构,具有相对简单的实现和出色的实际摊余性能。

您可以使用最小堆来在恒定时间内找到最小元素,或者使用最大堆来找到最大元素。但如果你想同时做这两项操作呢?可以使用“最小值-最大值”在恒定时间内执行这两个操作。它通过使用最小-最大排序来工作:在连续树级别之间交替进行最小和最大堆比较。

斐波那契堆

它们被用于一些已知的最快算法(渐近)中,用于许多与图相关的问题,例如最短路径问题。Dijkstra的算法在标准二进制堆的O(E log V)时间内运行;使用斐波那契堆将其提高到O(E+V log V),这对于密集图来说是一个巨大的加速。然而,不幸的是,它们有一个很高的恒定因子,往往使它们在实践中不切实际。

我以前和WPL Trees一起过得很好。最小化分支加权路径长度的树变体。权重由节点访问决定,以便频繁访问的节点迁移到更靠近根的位置。不知道它们与八字树相比如何,因为我从未使用过。