周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

二进制决策图是我最喜欢的数据结构之一,或者实际上是降序二进制决策图(ROBDD)。

例如,此类结构可用于:

表示项目集合并对这些集合执行非常快速的逻辑运算。任何布尔表达式,旨在查找表达式的所有解

注意,许多问题可以用布尔表达式表示。例如,suduku的解可以表示为布尔表达式。为该布尔表达式构建BDD将立即生成解决方案。

其他回答

任何有3D渲染经验的人都应该熟悉BSP树。通常,这是一种通过构造3D场景来进行渲染的方法,该方法可以在知道相机坐标和方位的情况下进行管理。

二进制空间分区(BSP)是一种递归细分a的方法通过超平面将空间划分为凸集。该细分产生通过方法表示场景树数据结构的BSP树。换句话说,这是一种方法形状复杂的破碎多边形转化为凸集,或更小多边形完全由非反射角(小于180°). 更一般的描述空间分区,请参见空间分区。最初,提出了这种方法在3D计算机图形方面渲染效率。其他一些应用程序包括执行具有形状的几何操作(构造实体几何),机器人和3D中的碰撞检测计算机游戏和其他计算机涉及处理的应用程序复杂的空间场景。

您可以使用最小堆来在恒定时间内找到最小元素,或者使用最大堆来找到最大元素。但如果你想同时做这两项操作呢?可以使用“最小值-最大值”在恒定时间内执行这两个操作。它通过使用最小-最大排序来工作:在连续树级别之间交替进行最小和最大堆比较。

有一种巧妙的数据结构,它使用数组来保存元素的数据,但数组在链接列表/数组中链接在一起。

这确实具有这样的优点,即对元素的迭代非常快(比纯链接列表方法更快),并且在内存和/或(去)分配中移动带有元素的数组的成本最低。(正因为如此,此数据结构对于模拟工作非常有用)。

我从这里知道:

http://software.intel.com/en-us/blogs/2010/03/26/linked-list-verses-array/

“……并且一个额外的数组被分配并链接到粒子数组的单元格列表中。这在某些方面类似于TBB实现其并发容器的方式。”(这是关于链接列表与数组的性能)

根据Bloom Filter提到的,可删除Bloom Filter(DlBF)在某些方面优于基本计数变体。看见http://arxiv.org/abs/1005.0352

循环或环形缓冲区-用于流式传输等。