周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

Van Emde Boas树

我想知道它们为什么很酷会很有用。一般来说,“为什么”这个问题是最重要的;)

我的答案是,他们给你O(log-logn)字典,其中包含{1..n}个键,而与使用的键的数量无关。就像重复减半得到O(log n)一样,重复平方得到O(log-log n),这就是vEB树中发生的情况。

其他回答

二进制决策图(我最喜欢的数据结构,擅长表示布尔方程并解决它们。适用于很多事情)堆(一个树,其中节点的父节点总是与节点的子节点保持某种关系,例如,节点的父级总是大于它的每个子节点(最大堆))优先级队列(实际上只有最小堆和最大堆,有助于维护大量元素的顺序,例如,应该首先删除具有最高值的项目)哈希表(具有各种查找策略和桶溢出处理)平衡的二进制搜索树(每种都有自己的优点)RB树(当以有序方式插入、查找、删除和迭代时,总体良好)Avl树(查找速度比RB快,但其他方面与RB非常相似)Splay树(当最近使用的节点可能被重用时,查找速度更快)融合树(利用快速乘法获得更好的查找时间)B+树(用于数据库和文件系统中的索引,当从索引读取/写入索引的延迟很长时非常有效)。空间索引(非常适合查询点/圆/矩形/线/立方体是否彼此接近或包含在其中)BSP树四叉树八叉树范围树许多相似但略有不同的树木,不同的尺寸区间树(很好地找到重叠区间,线性)图邻接列表(基本上是边的列表)邻接矩阵(表示图的有向边的表,每边一个位。对于图遍历非常快速)

这些是我能想到的。维基百科上还有更多关于数据结构的内容

Burrows–Wheeler变换(块排序压缩)

它是压缩的基本算法。假设您想压缩文本文件中的行。你会说,如果你对行进行排序,你就失去了信息。但BWT是这样工作的——它通过对输入进行排序,保持整数索引以恢复原始顺序,从而大大降低了熵。

以下是一些:

后缀尝试。适用于几乎所有类型的字符串搜索(http://en.wikipedia.org/wiki/Suffix_trie#Functionality). 另请参见后缀数组;它们没有后缀树那么快,但要小得多。飞溅的树木(如上所述)。它们很酷的原因有三个:它们很小:您只需要像在任何二叉树中那样的左右指针(不需要存储节点颜色或大小信息)它们(相对而言)很容易实施它们为一整套“测量标准”提供了最优的摊余复杂度(log n查找时间是每个人都知道的时间)。看见http://en.wikipedia.org/wiki/Splay_tree#Performance_theorems堆排序的搜索树:在树中存储一堆(key,prio)对,这样它就是一个关于关键字的搜索树,并根据优先级进行堆排序。人们可以看到这样一棵树有一个独特的形状(它并不总是完全堆积在左边)。使用随机优先级,它可以为您提供预期的O(log n)搜索时间,IIRC。一个小生境是具有O(1)邻居查询的无向平面图的邻接列表。与其说这是一种数据结构,不如说是一种组织现有数据结构的特定方式。这是如何做到的:每个平面图都有一个节点,其阶数最多为6。选择这样一个节点,将其邻居放在其邻居列表中,将其从图中删除,然后递归直到图为空。当给定一对(u,v)时,在v的邻居列表中查找u,在u的邻居列表上查找v。两者的大小都最多为6,因此这是O(1)。

根据上面的算法,如果u和v是邻居,那么v的列表中不会同时有u和v。如果需要,只需将每个节点缺失的邻居添加到该节点的邻居列表中,但要存储快速查找所需的邻居列表的数量。

远离所有这些图形结构,我只喜欢简单的环形缓冲区。

如果实施得当,您可以在保持性能的同时,甚至可以提高性能,从而大大减少内存占用。

它非常特定于领域,但半边缘数据结构非常整洁。它提供了一种在多边形网格(面和边)上迭代的方法,这在计算机图形和计算几何中非常有用。