周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

当我读到一些与RMQ和LCA相关的算法时,我偶然发现了另一种数据结构笛卡尔树。在笛卡尔树中,两个节点之间的最低共同祖先是它们之间的最小节点。将RMQ问题转换为LCA非常有用。

其他回答

我认为当您需要将一堆项目划分为不同的集合和查询成员时,不联合集合非常适合。联合和查找操作的良好实施导致摊余成本实际上是恒定的(如果我正确回忆起我的数据结构类,则与阿克曼南函数相反)。

不连续集合森林允许快速的成员查询和联合操作,并且最著名的是在Kruskal的最小生成树算法中使用。

真正酷的是,这两种操作都按阿克曼函数的倒数比例摊销了运行时间,这使其成为“最快”的非恒定时间数据结构。

成对堆是一种堆数据结构,具有相对简单的实现和出色的实际摊余性能。

远离所有这些图形结构,我只喜欢简单的环形缓冲区。

如果实施得当,您可以在保持性能的同时,甚至可以提高性能,从而大大减少内存占用。

Gerth Stølting Brodal和Chris Okasaki的自助倾斜二项式堆:

尽管它们的名字很长,但即使在函数设置中,它们也提供了渐近最优的堆操作。

O(1)尺寸,接头,插入件,最小值O(log n)删除最小值

注意,union需要O(1)而不是O(log n)时间,这与数据结构教科书中通常包含的更为知名的堆(如左派堆)不同。与斐波那契堆不同,这些渐近线是最坏的情况,而不是摊销,即使持续使用!

Haskell中有多种实现。

在Brodal提出了一个具有相同渐近线的命令堆之后,它们由Brodal和Okasaki共同导出。