周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

Bloom过滤器:m位的位数组,最初全部设置为0。

要添加一个项,您可以通过k个哈希函数运行它,该函数将在数组中为您提供k个索引,然后将其设置为1。

要检查集合中是否有项目,请计算k个索引并检查它们是否都设置为1。

当然,这给出了一些误报的概率(根据维基百科,大约是0.61^(m/n),其中n是插入项目的数量)。假阴性是不可能的。

删除项是不可能的,但您可以实现计数布隆过滤器,由整数数组和递增/递减表示。

其他回答

远离所有这些图形结构,我只喜欢简单的环形缓冲区。

如果实施得当,您可以在保持性能的同时,甚至可以提高性能,从而大大减少内存占用。

B*树

这是一种以更昂贵的插入为代价的高效搜索的B树。

尝试,也称为前缀树或临界位树,已经存在了40多年,但仍然相对未知。在“TRASH-一个动态LC trie和哈希数据结构”中描述了一个非常酷的trys用法,它将trie与哈希函数结合在一起。

循环或环形缓冲区-用于流式传输等。

我认为标准数据结构的无锁替代方案,即无锁队列、堆栈和列表被忽略了。随着并发性成为更高的优先级,它们变得越来越重要,并且比使用互斥或锁来处理并发读/写更令人钦佩。

以下是一些链接http://www.cl.cam.ac.uk/research/srg/netos/lock-free/http://www.research.ibm.com/people/m/michael/podc-1996.pdf[PDF链接]http://www.boyet.com/Articles/LockfreeStack.html

迈克·阿克顿(Mike Acton)的博客中有一些关于无锁设计和方法的优秀文章