周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

我有时使用反转列表来存储范围,它们通常用于在正则表达式中存储字符类。例如,请参见http://www.ibm.com/developerworks/linux/library/l-cpinv.html

另一个很好的用例是加权随机决策。假设你有一个符号和相关概率的列表,你想根据这些概率随机选择它们

   a => 0.1
   b => 0.5
   c => 0.4

然后,你对所有概率进行一次连续求和:

  (0.1, 0.6, 1.0)

这是你的反转列表。生成一个介于0和1之间的随机数,并查找列表中下一个较高条目的索引。你可以用二进制搜索来实现,因为它是排序的。一旦获得了索引,就可以在原始列表中查找符号。

如果有n个符号,则每个随机选择的符号都有O(n)个准备时间,然后是O(log(n))个访问时间,与权重分布无关。

反转列表的一种变体使用负数来指示范围的端点,这使得计算某一点上有多少范围重叠变得容易。看见http://www.perlmonks.org/index.pl?node_id=841368例如。

其他回答

二进制决策图是我最喜欢的数据结构之一,或者实际上是降序二进制决策图(ROBDD)。

例如,此类结构可用于:

表示项目集合并对这些集合执行非常快速的逻辑运算。任何布尔表达式,旨在查找表达式的所有解

注意,许多问题可以用布尔表达式表示。例如,suduku的解可以表示为布尔表达式。为该布尔表达式构建BDD将立即生成解决方案。

多边形网格的半边数据结构和翼边。

适用于计算几何算法。

您可以使用最小堆来在恒定时间内找到最小元素,或者使用最大堆来找到最大元素。但如果你想同时做这两项操作呢?可以使用“最小值-最大值”在恒定时间内执行这两个操作。它通过使用最小-最大排序来工作:在连续树级别之间交替进行最小和最大堆比较。

空间索引,特别是R-树和KD树,有效地存储空间数据。它们适用于地理地图坐标数据和VLSI位置和路线算法,有时也适用于最近邻搜索。

位阵列紧凑地存储单个位,并允许快速位操作。

Zippers——数据结构的衍生物,可以修改结构,使其具有“光标”的自然概念——当前位置。这些非常有用,因为它们保证了标记不会超出范围——例如在xmonad窗口管理器中使用,以跟踪哪个窗口已聚焦。

令人惊讶的是,您可以通过将微积分技术应用于原始数据结构的类型来派生它们!