周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

DAWG是一种特殊的Trie,其中类似的子树被压缩为单亲。我扩展了修改后的DAWG,并提出了一个漂亮的数据结构ASSDAWG(Anagram Search Sorted DAWG)。这种工作方式是,每当将字符串插入DAWG时,首先对其进行桶排序,然后插入,叶节点保存一个额外的数字,指示如果我们从根到达该叶节点,哪些排列是有效的。这有两大优点:

由于我在插入之前对字符串进行排序,并且DAWG自然会折叠类似的子树,所以我得到了高级别的压缩(例如,“吃”、“吃”和“茶”都变成了一条路径a-e-t,在叶节点处有一个数字列表,指示a-e-t的哪些排列是有效的)。搜索给定字符串的变位现在是非常快速和简单的,因为从根到叶的路径使用排列数保存了叶节点处该路径的所有有效变位。

其他回答

有一种巧妙的数据结构,它使用数组来保存元素的数据,但数组在链接列表/数组中链接在一起。

这确实具有这样的优点,即对元素的迭代非常快(比纯链接列表方法更快),并且在内存和/或(去)分配中移动带有元素的数组的成本最低。(正因为如此,此数据结构对于模拟工作非常有用)。

我从这里知道:

http://software.intel.com/en-us/blogs/2010/03/26/linked-list-verses-array/

“……并且一个额外的数组被分配并链接到粒子数组的单元格列表中。这在某些方面类似于TBB实现其并发容器的方式。”(这是关于链接列表与数组的性能)

不是真正的数据结构;这更像是优化动态分配阵列的一种方式,但Emacs中使用的间隙缓冲区有点酷。

不连续集合森林允许快速的成员查询和联合操作,并且最著名的是在Kruskal的最小生成树算法中使用。

真正酷的是,这两种操作都按阿克曼函数的倒数比例摊销了运行时间,这使其成为“最快”的非恒定时间数据结构。

Scapegoat树。普通二叉树的一个典型问题是它们变得不平衡(例如,当按升序插入键时)

平衡二叉树(AKA AVL树)在每次插入后都会浪费大量时间进行平衡。

红黑树保持平衡,但每个节点都需要额外的存储空间。

Scapegoat树像红黑树一样保持平衡,但不需要任何额外的存储。他们通过在每次插入后分析树并进行微小调整来实现这一点。看见http://en.wikipedia.org/wiki/Scapegoat_tree.

BK树或Burkhard Keller树是一种基于树的数据结构,可用于快速查找字符串的近似匹配项。