周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

DAWG是一种特殊的Trie,其中类似的子树被压缩为单亲。我扩展了修改后的DAWG,并提出了一个漂亮的数据结构ASSDAWG(Anagram Search Sorted DAWG)。这种工作方式是,每当将字符串插入DAWG时,首先对其进行桶排序,然后插入,叶节点保存一个额外的数字,指示如果我们从根到达该叶节点,哪些排列是有效的。这有两大优点:

由于我在插入之前对字符串进行排序,并且DAWG自然会折叠类似的子树,所以我得到了高级别的压缩(例如,“吃”、“吃”和“茶”都变成了一条路径a-e-t,在叶节点处有一个数字列表,指示a-e-t的哪些排列是有效的)。搜索给定字符串的变位现在是非常快速和简单的,因为从根到叶的路径使用排列数保存了叶节点处该路径的所有有效变位。

其他回答

我很惊讶没有人提到Merkle树(即哈希树)。

在许多情况下(P2P程序、数字签名),当您只有部分文件可用时,您需要验证整个文件的哈希。

向左倾斜的红黑树。罗伯特·塞奇威克(Robert Sedgewick)于2008年发表的红黑树的一个显著简化的实现(大约是要实现的代码行的一半)。如果您在红黑树的实现方面遇到过困难,请阅读此变体。

与安德森树非常相似(如果不是完全相同)。

芬威克树。这是一种数据结构,用于计算向量中两个给定的子索引i和j之间的所有元素的总和。简单的解决方案是,从开始时就预先计算总和,不允许更新项目(必须做O(n)工作才能跟上)。

Fenwick Trees允许您在O(logn)中更新和查询,它的工作方式非常简单。芬威克的原始论文对这一点做了很好的解释,可以在这里免费获得:

http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol24/issue3/spe884.pdf

它的父亲RQM树也很酷:它允许您保存关于向量的两个索引之间的最小元素的信息,它还可以在O(logn)更新和查询中工作。我喜欢先教RQM,然后教芬威克树。

以下是一些:

后缀尝试。适用于几乎所有类型的字符串搜索(http://en.wikipedia.org/wiki/Suffix_trie#Functionality). 另请参见后缀数组;它们没有后缀树那么快,但要小得多。飞溅的树木(如上所述)。它们很酷的原因有三个:它们很小:您只需要像在任何二叉树中那样的左右指针(不需要存储节点颜色或大小信息)它们(相对而言)很容易实施它们为一整套“测量标准”提供了最优的摊余复杂度(log n查找时间是每个人都知道的时间)。看见http://en.wikipedia.org/wiki/Splay_tree#Performance_theorems堆排序的搜索树:在树中存储一堆(key,prio)对,这样它就是一个关于关键字的搜索树,并根据优先级进行堆排序。人们可以看到这样一棵树有一个独特的形状(它并不总是完全堆积在左边)。使用随机优先级,它可以为您提供预期的O(log n)搜索时间,IIRC。一个小生境是具有O(1)邻居查询的无向平面图的邻接列表。与其说这是一种数据结构,不如说是一种组织现有数据结构的特定方式。这是如何做到的:每个平面图都有一个节点,其阶数最多为6。选择这样一个节点,将其邻居放在其邻居列表中,将其从图中删除,然后递归直到图为空。当给定一对(u,v)时,在v的邻居列表中查找u,在u的邻居列表上查找v。两者的大小都最多为6,因此这是O(1)。

根据上面的算法,如果u和v是邻居,那么v的列表中不会同时有u和v。如果需要,只需将每个节点缺失的邻居添加到该节点的邻居列表中,但要存储快速查找所需的邻居列表的数量。

我喜欢缓存不可见的数据结构。其基本思想是以递归更小的块来布局树,以便许多不同大小的缓存可以利用适合它们的块。这导致了从RAM中的L1缓存到从磁盘读取的大块数据的所有缓存的高效使用,而无需了解任何缓存层的大小细节。