周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

DAWG是一种特殊的Trie,其中类似的子树被压缩为单亲。我扩展了修改后的DAWG,并提出了一个漂亮的数据结构ASSDAWG(Anagram Search Sorted DAWG)。这种工作方式是,每当将字符串插入DAWG时,首先对其进行桶排序,然后插入,叶节点保存一个额外的数字,指示如果我们从根到达该叶节点,哪些排列是有效的。这有两大优点:

由于我在插入之前对字符串进行排序,并且DAWG自然会折叠类似的子树,所以我得到了高级别的压缩(例如,“吃”、“吃”和“茶”都变成了一条路径a-e-t,在叶节点处有一个数字列表,指示a-e-t的哪些排列是有效的)。搜索给定字符串的变位现在是非常快速和简单的,因为从根到叶的路径使用排列数保存了叶节点处该路径的所有有效变位。

其他回答

我真的很喜欢间隔树。它们允许您获取一组时间间隔(即开始/结束时间或其他时间),并查询哪些时间间隔包含给定时间,或哪些时间间隔在给定时间段内“活动”。查询可以在O(log n)中完成,预处理是O(n log n)。

芬威克树。这是一种数据结构,用于计算向量中两个给定的子索引i和j之间的所有元素的总和。简单的解决方案是,从开始时就预先计算总和,不允许更新项目(必须做O(n)工作才能跟上)。

Fenwick Trees允许您在O(logn)中更新和查询,它的工作方式非常简单。芬威克的原始论文对这一点做了很好的解释,可以在这里免费获得:

http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol24/issue3/spe884.pdf

它的父亲RQM树也很酷:它允许您保存关于向量的两个索引之间的最小元素的信息,它还可以在O(logn)更新和查询中工作。我喜欢先教RQM,然后教芬威克树。

角落缝合的数据结构。根据总结:

拐角缝合是一种用于表示矩形二维对象。看起来特别适合VLSI交互式编辑系统布局。数据结构有两个重要特征:第一,空白明确表示;第二,矩形区域被缝合在他们的角落像一个拼缝被子。此组织快速算法的结果(线性时间或更好),创建、删除、拉伸和压实。算法如下以简化模型VLSI电路和存储器结构要求如下讨论。测量结果表明拐角缝合要求大约三倍尽可能简单的存储空间代表。

不连续集合森林允许快速的成员查询和联合操作,并且最著名的是在Kruskal的最小生成树算法中使用。

真正酷的是,这两种操作都按阿克曼函数的倒数比例摊销了运行时间,这使其成为“最快”的非恒定时间数据结构。

min-max堆是实现双端优先级队列的堆的变体。它通过简单地更改堆属性来实现这一点:如果偶数(奇数)级别上的每个元素都小于(大于)所有子级和孙子级,则称树为最小-最大排序。级别从1开始编号。

http://internet512.chonbuk.ac.kr/datastructure/heap/img/heap8.jpg