周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

BK树或Burkhard Keller树是一种基于树的数据结构,可用于快速查找字符串的近似匹配项。

其他回答

DAWG是一种特殊的Trie,其中类似的子树被压缩为单亲。我扩展了修改后的DAWG,并提出了一个漂亮的数据结构ASSDAWG(Anagram Search Sorted DAWG)。这种工作方式是,每当将字符串插入DAWG时,首先对其进行桶排序,然后插入,叶节点保存一个额外的数字,指示如果我们从根到达该叶节点,哪些排列是有效的。这有两大优点:

由于我在插入之前对字符串进行排序,并且DAWG自然会折叠类似的子树,所以我得到了高级别的压缩(例如,“吃”、“吃”和“茶”都变成了一条路径a-e-t,在叶节点处有一个数字列表,指示a-e-t的哪些排列是有效的)。搜索给定字符串的变位现在是非常快速和简单的,因为从根到叶的路径使用排列数保存了叶节点处该路径的所有有效变位。

Hinze和Paterson的2-3手指树是一种功能强大的数据结构瑞士军刀,具有很好的渐近线,适用于各种操作。虽然复杂,但它们比之前的Kaplan和Tarjan通过递归减速实现的持久列表的命令式结构简单得多。

它们作为一个可链接的deque,O(1)访问任意一端,O(log-min(n,m))追加,并提供O(log-main(n),length-n))索引,直接访问序列的任何部分上的单形前缀和。

实现存在于Haskell、Coq、F#、Scala、Java、C、Clojure、C#和其他语言中。

您可以使用它们来实现优先级搜索队列、区间映射、具有快速头部访问的绳索、映射、集合、可链接序列或几乎任何结构,您可以将其表述为在快速可链接/可索引序列上收集单形结果。

我还有一些幻灯片描述了它们的派生和使用。

环境跟踪递归结构。

编译器使用递归但不像树的结构。内部作用域有一个指向封闭作用域的指针,因此嵌套是由内向外的。验证变量是否在范围内是从内部范围到封闭范围的递归调用。

public class Env
{    
    HashMap<String, Object> map;
    Env                     outer;

    Env()
    {
        outer = null;
        map = new HashMap();
    }

    Env(Env o)
    {
        outer = o;
        map = new HashMap();
    }

    void put(String key, Object value)
    {
        map.put(key, value);
    }

    Object get(String key)
    {
        if (map.containsKey(key))
        {
            return map.get(key);
        }
        if (outer != null)
        {
            return outer.get(key);
        }
        return null;
    }

    Env push()
    {
        return new Env(this);
    }

    Env pop()
    {
        return outer;
    }
}

我不确定这个结构是否有名字。我称之为一份由内而外的清单。

Gerth Stølting Brodal和Chris Okasaki的自助倾斜二项式堆:

尽管它们的名字很长,但即使在函数设置中,它们也提供了渐近最优的堆操作。

O(1)尺寸,接头,插入件,最小值O(log n)删除最小值

注意,union需要O(1)而不是O(log n)时间,这与数据结构教科书中通常包含的更为知名的堆(如左派堆)不同。与斐波那契堆不同,这些渐近线是最坏的情况,而不是摊销,即使持续使用!

Haskell中有多种实现。

在Brodal提出了一个具有相同渐近线的命令堆之后,它们由Brodal和Okasaki共同导出。

我认为保罗·费拉吉纳和乔凡尼·曼奇尼的FM指数真的很酷。尤其是在生物信息学方面。它本质上是一个压缩的全文索引,利用了后缀数组和参考文本的burrows-wheeler变换的组合。可以在不解压缩整个索引的情况下搜索索引。