周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

直角三角形网络(RTIN)

非常简单的自适应细分网格的方法。拆分和合并操作只需要几行代码。

其他回答

XOR链表使用两个XOR'd指针来减少双链表的存储需求。有点晦涩但整洁!

Bloom过滤器:m位的位数组,最初全部设置为0。

要添加一个项,您可以通过k个哈希函数运行它,该函数将在数组中为您提供k个索引,然后将其设置为1。

要检查集合中是否有项目,请计算k个索引并检查它们是否都设置为1。

当然,这给出了一些误报的概率(根据维基百科,大约是0.61^(m/n),其中n是插入项目的数量)。假阴性是不可能的。

删除项是不可能的,但您可以实现计数布隆过滤器,由整数数组和递增/递减表示。

Zippers——数据结构的衍生物,可以修改结构,使其具有“光标”的自然概念——当前位置。这些非常有用,因为它们保证了标记不会超出范围——例如在xmonad窗口管理器中使用,以跟踪哪个窗口已聚焦。

令人惊讶的是,您可以通过将微积分技术应用于原始数据结构的类型来派生它们!

Van Emde Boas树

我想知道它们为什么很酷会很有用。一般来说,“为什么”这个问题是最重要的;)

我的答案是,他们给你O(log-logn)字典,其中包含{1..n}个键,而与使用的键的数量无关。就像重复减半得到O(log n)一样,重复平方得到O(log-log n),这就是vEB树中发生的情况。

我个人认为稀疏矩阵数据结构非常有趣。http://www.netlib.org/linalg/html_templates/node90.html

著名的BLAS库使用这些。当您处理包含100000行和列的线性系统时,使用它们变得至关重要。其中一些还类似于计算机图形中常见的紧凑网格(基本上类似于桶排序网格)。http://www.cs.kuleuven.be/~ares/publications/LD08CFRGRT/LD08CFRGRT.pdf

同样就计算机图形而言,MAC网格有些有趣,但这仅仅是因为它们很聪明。http://www.seas.upenn.edu/~cis665/projects/Liquiation_665_Report.pdf