周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

Fast Compact尝试:

Judy数组:用于位、整数和字符串的非常快速且内存高效的有序稀疏动态数组。Judy数组比任何二进制搜索树都更快、更节省内存。HAT-trie:一种基于缓存的字符串数据结构基于磁盘的字符串管理的B次尝试

其他回答

BK树或Burkhard Keller树是一种基于树的数据结构,可用于快速查找字符串的近似匹配项。

我很惊讶没有人提到Merkle树(即哈希树)。

在许多情况下(P2P程序、数字签名),当您只有部分文件可用时,您需要验证整个文件的哈希。

尝试,也称为前缀树或临界位树,已经存在了40多年,但仍然相对未知。在“TRASH-一个动态LC trie和哈希数据结构”中描述了一个非常酷的trys用法,它将trie与哈希函数结合在一起。

Bloom过滤器:m位的位数组,最初全部设置为0。

要添加一个项,您可以通过k个哈希函数运行它,该函数将在数组中为您提供k个索引,然后将其设置为1。

要检查集合中是否有项目,请计算k个索引并检查它们是否都设置为1。

当然,这给出了一些误报的概率(根据维基百科,大约是0.61^(m/n),其中n是插入项目的数量)。假阴性是不可能的。

删除项是不可能的,但您可以实现计数布隆过滤器,由整数数组和递增/递减表示。

Zippers——数据结构的衍生物,可以修改结构,使其具有“光标”的自然概念——当前位置。这些非常有用,因为它们保证了标记不会超出范围——例如在xmonad窗口管理器中使用,以跟踪哪个窗口已聚焦。

令人惊讶的是,您可以通过将微积分技术应用于原始数据结构的类型来派生它们!