周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

您可以使用最小堆来在恒定时间内找到最小元素,或者使用最大堆来找到最大元素。但如果你想同时做这两项操作呢?可以使用“最小值-最大值”在恒定时间内执行这两个操作。它通过使用最小-最大排序来工作:在连续树级别之间交替进行最小和最大堆比较。

其他回答

向左倾斜的红黑树。罗伯特·塞奇威克(Robert Sedgewick)于2008年发表的红黑树的一个显著简化的实现(大约是要实现的代码行的一半)。如果您在红黑树的实现方面遇到过困难,请阅读此变体。

与安德森树非常相似(如果不是完全相同)。

我认为当您需要将一堆项目划分为不同的集合和查询成员时,不联合集合非常适合。联合和查找操作的良好实施导致摊余成本实际上是恒定的(如果我正确回忆起我的数据结构类,则与阿克曼南函数相反)。

增强的哈希算法非常有趣。线性哈希很简单,因为它允许一次在哈希表中拆分一个“桶”,而不是重新哈希整个表。这对于分布式缓存特别有用。然而,对于大多数简单的拆分策略,您最终会快速连续地拆分所有存储桶,并且表的负载系数波动非常严重。

我认为螺旋哈希法也很好。与线性哈希一样,一次拆分一个存储桶,存储桶中的记录只有不到一半被放入同一个新存储桶中。它非常干净和快速。然而,如果每个“桶”都由具有类似规格的机器托管,则效率可能很低。为了充分利用硬件,您需要混合使用功能较弱和功能更强的机器。

二进制决策图(我最喜欢的数据结构,擅长表示布尔方程并解决它们。适用于很多事情)堆(一个树,其中节点的父节点总是与节点的子节点保持某种关系,例如,节点的父级总是大于它的每个子节点(最大堆))优先级队列(实际上只有最小堆和最大堆,有助于维护大量元素的顺序,例如,应该首先删除具有最高值的项目)哈希表(具有各种查找策略和桶溢出处理)平衡的二进制搜索树(每种都有自己的优点)RB树(当以有序方式插入、查找、删除和迭代时,总体良好)Avl树(查找速度比RB快,但其他方面与RB非常相似)Splay树(当最近使用的节点可能被重用时,查找速度更快)融合树(利用快速乘法获得更好的查找时间)B+树(用于数据库和文件系统中的索引,当从索引读取/写入索引的延迟很长时非常有效)。空间索引(非常适合查询点/圆/矩形/线/立方体是否彼此接近或包含在其中)BSP树四叉树八叉树范围树许多相似但略有不同的树木,不同的尺寸区间树(很好地找到重叠区间,线性)图邻接列表(基本上是边的列表)邻接矩阵(表示图的有向边的表,每边一个位。对于图遍历非常快速)

这些是我能想到的。维基百科上还有更多关于数据结构的内容

一个鲜为人知但相当漂亮的数据结构是Fenwick树(有时也称为二进制索引树或BIT)。它存储累积和并支持O(log(n))运算。虽然累积和听起来不太令人兴奋,但它可以用于解决许多需要排序/log(n)数据结构的问题。

IMO的主要卖点是易于实施。在解决算法问题时非常有用,否则将涉及编码红黑/avl树。