周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

Hinze和Paterson的2-3手指树是一种功能强大的数据结构瑞士军刀,具有很好的渐近线,适用于各种操作。虽然复杂,但它们比之前的Kaplan和Tarjan通过递归减速实现的持久列表的命令式结构简单得多。

它们作为一个可链接的deque,O(1)访问任意一端,O(log-min(n,m))追加,并提供O(log-main(n),length-n))索引,直接访问序列的任何部分上的单形前缀和。

实现存在于Haskell、Coq、F#、Scala、Java、C、Clojure、C#和其他语言中。

您可以使用它们来实现优先级搜索队列、区间映射、具有快速头部访问的绳索、映射、集合、可链接序列或几乎任何结构,您可以将其表述为在快速可链接/可索引序列上收集单形结果。

我还有一些幻灯片描述了它们的派生和使用。

其他回答

张开树怎么样?

此外,Chris Okasaki的纯功能数据结构也在脑海中浮现。

跳过列表实际上非常棒:http://en.wikipedia.org/wiki/Skip_list

空间索引,特别是R-树和KD树,有效地存储空间数据。它们适用于地理地图坐标数据和VLSI位置和路线算法,有时也适用于最近邻搜索。

位阵列紧凑地存储单个位,并允许快速位操作。

Van Emde Boas树

我想知道它们为什么很酷会很有用。一般来说,“为什么”这个问题是最重要的;)

我的答案是,他们给你O(log-logn)字典,其中包含{1..n}个键,而与使用的键的数量无关。就像重复减半得到O(log n)一样,重复平方得到O(log-log n),这就是vEB树中发生的情况。

成对堆是一种堆数据结构,具有相对简单的实现和出色的实际摊余性能。