周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

以下是一些:

后缀尝试。适用于几乎所有类型的字符串搜索(http://en.wikipedia.org/wiki/Suffix_trie#Functionality). 另请参见后缀数组;它们没有后缀树那么快,但要小得多。飞溅的树木(如上所述)。它们很酷的原因有三个:它们很小:您只需要像在任何二叉树中那样的左右指针(不需要存储节点颜色或大小信息)它们(相对而言)很容易实施它们为一整套“测量标准”提供了最优的摊余复杂度(log n查找时间是每个人都知道的时间)。看见http://en.wikipedia.org/wiki/Splay_tree#Performance_theorems堆排序的搜索树:在树中存储一堆(key,prio)对,这样它就是一个关于关键字的搜索树,并根据优先级进行堆排序。人们可以看到这样一棵树有一个独特的形状(它并不总是完全堆积在左边)。使用随机优先级,它可以为您提供预期的O(log n)搜索时间,IIRC。一个小生境是具有O(1)邻居查询的无向平面图的邻接列表。与其说这是一种数据结构,不如说是一种组织现有数据结构的特定方式。这是如何做到的:每个平面图都有一个节点,其阶数最多为6。选择这样一个节点,将其邻居放在其邻居列表中,将其从图中删除,然后递归直到图为空。当给定一对(u,v)时,在v的邻居列表中查找u,在u的邻居列表上查找v。两者的大小都最多为6,因此这是O(1)。

根据上面的算法,如果u和v是邻居,那么v的列表中不会同时有u和v。如果需要,只需将每个节点缺失的邻居添加到该节点的邻居列表中,但要存储快速查找所需的邻居列表的数量。

其他回答

区域四叉树

(引自维基百科)

区域四叉树通过将区域分解为四个相等的象限、子象限等来表示二维空间的分区,每个叶节点包含对应于特定子区域的数据。树中的每个节点要么正好有四个子节点,要么没有子节点(叶节点)。

像这样的四叉树很适合存储空间数据,例如纬度和经度或其他类型的坐标。

这是我在大学里最喜欢的数据结构。对这家伙进行编码并看到它的工作非常酷。如果你正在寻找一个需要思考并且有点偏离常规的项目,我强烈建议你这样做。无论如何,它比通常在数据结构类中分配的标准BST派生工具有趣得多!

事实上,作为奖励,我在这里找到了(弗吉尼亚理工大学的)课堂项目前的演讲笔记(pdf警告)。

我不确定这个数据结构是否有名字,但是提议的包含在Boost中的tokenmap数据结构有点有趣。这是一个动态调整大小的映射,其中查找不仅是O(1),而且是简单的数组访问。我写了关于这个数据结构的大部分背景材料,其中描述了它如何工作的基本原理。

操作系统使用类似于tokenmap的东西来将文件或资源句柄映射到表示文件或资源的数据结构。

min-max堆是实现双端优先级队列的堆的变体。它通过简单地更改堆属性来实现这一点:如果偶数(奇数)级别上的每个元素都小于(大于)所有子级和孙子级,则称树为最小-最大排序。级别从1开始编号。

http://internet512.chonbuk.ac.kr/datastructure/heap/img/heap8.jpg

以下是一些:

后缀尝试。适用于几乎所有类型的字符串搜索(http://en.wikipedia.org/wiki/Suffix_trie#Functionality). 另请参见后缀数组;它们没有后缀树那么快,但要小得多。飞溅的树木(如上所述)。它们很酷的原因有三个:它们很小:您只需要像在任何二叉树中那样的左右指针(不需要存储节点颜色或大小信息)它们(相对而言)很容易实施它们为一整套“测量标准”提供了最优的摊余复杂度(log n查找时间是每个人都知道的时间)。看见http://en.wikipedia.org/wiki/Splay_tree#Performance_theorems堆排序的搜索树:在树中存储一堆(key,prio)对,这样它就是一个关于关键字的搜索树,并根据优先级进行堆排序。人们可以看到这样一棵树有一个独特的形状(它并不总是完全堆积在左边)。使用随机优先级,它可以为您提供预期的O(log n)搜索时间,IIRC。一个小生境是具有O(1)邻居查询的无向平面图的邻接列表。与其说这是一种数据结构,不如说是一种组织现有数据结构的特定方式。这是如何做到的:每个平面图都有一个节点,其阶数最多为6。选择这样一个节点,将其邻居放在其邻居列表中,将其从图中删除,然后递归直到图为空。当给定一对(u,v)时,在v的邻居列表中查找u,在u的邻居列表上查找v。两者的大小都最多为6,因此这是O(1)。

根据上面的算法,如果u和v是邻居,那么v的列表中不会同时有u和v。如果需要,只需将每个节点缺失的邻居添加到该节点的邻居列表中,但要存储快速查找所需的邻居列表的数量。