周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

展开的链接列表是链接列表的变体,它在每个节点中存储多个元素。它可以显著提高缓存性能,同时减少与存储列表元数据(如引用)相关的内存开销。它与B树有关。

record node {
    node next       // reference to next node in list
    int numElements // number of elements in this node, up to maxElements
    array elements  // an array of numElements elements, with space allocated for maxElements elements
}

其他回答

Kd-Trees是实时光线跟踪中使用的空间数据结构,它的缺点是需要裁剪与不同空间交叉的三角形。一般来说,BVH更快,因为它们更轻。MX-CIF四叉树,通过将规则四叉树与四叉树边缘的二叉树组合,存储边界框而不是任意点集。HAMT,由于所涉及的常数,访问时间通常超过O(1)个哈希图的分层哈希图。反向索引,在搜索引擎界非常有名,因为它用于快速检索与不同搜索词相关的文档。

大多数(如果不是全部)记录在NIST算法和数据结构词典中

尝试,也称为前缀树或临界位树,已经存在了40多年,但仍然相对未知。在“TRASH-一个动态LC trie和哈希数据结构”中描述了一个非常酷的trys用法,它将trie与哈希函数结合在一起。

远离所有这些图形结构,我只喜欢简单的环形缓冲区。

如果实施得当,您可以在保持性能的同时,甚至可以提高性能,从而大大减少内存占用。

Gerth Stølting Brodal和Chris Okasaki的自助倾斜二项式堆:

尽管它们的名字很长,但即使在函数设置中,它们也提供了渐近最优的堆操作。

O(1)尺寸,接头,插入件,最小值O(log n)删除最小值

注意,union需要O(1)而不是O(log n)时间,这与数据结构教科书中通常包含的更为知名的堆(如左派堆)不同。与斐波那契堆不同,这些渐近线是最坏的情况,而不是摊销,即使持续使用!

Haskell中有多种实现。

在Brodal提出了一个具有相同渐近线的命令堆之后,它们由Brodal和Okasaki共同导出。

工作窃取队列

无锁数据结构,用于在多个线程之间平均分配工作C/C++中工作窃取队列的实现?