周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

看看手指树,特别是如果你是前面提到的纯函数数据结构的粉丝。它们是持久序列的功能表示,支持以摊销的恒定时间访问末端,以及以较小片段的大小按时间对数连接和拆分。

根据原文:

我们的函数2-3指树是Okasaki(1998)介绍的一种通用设计技术的一个实例,称为隐式递归减速。我们已经注意到,这些树是他的隐式deque结构的扩展,用2-3个节点替换对,以提供高效连接和拆分所需的灵活性。

手指树可以用幺半群参数化,使用不同的幺半群将导致树的不同行为。这使手指树可以模拟其他数据结构。

其他回答

您可以使用最小堆来在恒定时间内找到最小元素,或者使用最大堆来找到最大元素。但如果你想同时做这两项操作呢?可以使用“最小值-最大值”在恒定时间内执行这两个操作。它通过使用最小-最大排序来工作:在连续树级别之间交替进行最小和最大堆比较。

Kd-Trees是实时光线跟踪中使用的空间数据结构,它的缺点是需要裁剪与不同空间交叉的三角形。一般来说,BVH更快,因为它们更轻。MX-CIF四叉树,通过将规则四叉树与四叉树边缘的二叉树组合,存储边界框而不是任意点集。HAMT,由于所涉及的常数,访问时间通常超过O(1)个哈希图的分层哈希图。反向索引,在搜索引擎界非常有名,因为它用于快速检索与不同搜索词相关的文档。

大多数(如果不是全部)记录在NIST算法和数据结构词典中

张开树怎么样?

此外,Chris Okasaki的纯功能数据结构也在脑海中浮现。

我喜欢treaps——这是一个简单而有效的想法,即在二进制搜索树上叠加具有随机优先级的堆结构,以平衡它。

嵌套集用于表示关系数据库中的树并对其运行查询。例如,ActiveRecord(RubyonRails的默认ORM)附带了一个非常简单的嵌套集插件,这使得使用树变得微不足道。