想象两个正整数A和b,我想把这两个组合成一个整数C。
不可能有其他整数D和E组合成C。 所以把它们和加法运算符结合是不行的。例:30 + 10 = 40 = 40 + 0 = 39 + 1 连接也不管用。例如“31”+“2”= 312 =“3”+“12”
这种组合操作也应该是确定的(总是用相同的输入产生相同的结果),并且应该总是在整数的正侧或负侧产生一个整数。
想象两个正整数A和b,我想把这两个组合成一个整数C。
不可能有其他整数D和E组合成C。 所以把它们和加法运算符结合是不行的。例:30 + 10 = 40 = 40 + 0 = 39 + 1 连接也不管用。例如“31”+“2”= 312 =“3”+“12”
这种组合操作也应该是确定的(总是用相同的输入产生相同的结果),并且应该总是在整数的正侧或负侧产生一个整数。
当前回答
给定正整数A和B,设D = A的位数,E= B的位数 结果可以是D, 0, E, 0, a和B的串联。
示例:A = 300, B = 12。D = 3, E=2 result = 302030012。 这利用了一个事实,即唯一以0开头的数字是0,
优点:易于编码,易于解码,人类可读,有效数字可以先比较,潜在的比较无需计算,简单的错误检查。
缺点:结果的大小是个问题。不过没关系,我们为什么要在电脑里存储无界整数呢。
其他回答
假设你有一个32位整数,为什么不把a移到前16位的一半,把B移到另一半?
def vec_pack(vec):
return vec[0] + vec[1] * 65536;
def vec_unpack(number):
return [number % 65536, number // 65536];
除了尽可能节省空间和计算成本之外,一个非常酷的副作用是,您可以在填充的数字上进行向量计算。
a = vec_pack([2,4])
b = vec_pack([1,2])
print(vec_unpack(a+b)) # [3, 6] Vector addition
print(vec_unpack(a-b)) # [1, 2] Vector subtraction
print(vec_unpack(a*2)) # [4, 8] Scalar multiplication
假设我们有两个数字B和C,把它们编码成一个数字A
A = b + c * n
在哪里
B= a % n = B
C= a / n = C
如果A和B可以用2个字节表示,那么可以用4个字节组合它们。把A放在最有效的一半,B放在最不有效的一半。
在C语言中,这给出了(假设sizeof(short)=2和sizeof(int)=4):
unsigned int combine(unsigned short A, unsigned short B)
{
return ((unsigned)A<<16) | (unsigned)B;
}
unsigned short getA(unsigned int C)
{
return C>>16;
}
unsigned short getB(unsigned int C)
{
return C & 0xFFFF; // or return (unsigned short)C;
}
使输入unsigned short或uint16_t确保他们在你|或+他们一起之前零扩展。否则- B会将上面的位设置为全1或,或者如果你添加,则从上半部分减去1。
强制转换(unsigned)A可以避免将窄类型默认提升为带符号int后左移的带符号溢出UB。对于更广泛的类型,也必须避免转移出位你保持,如((uint64_t)A << 32 | B,因为默认提升停止在int。
(unsigned)B强制转换是不必要的;重要的是它一开始是无符号空头B。左边的|是无符号的意味着它也将转换为无符号的。
你可以将它用于有符号类型,至少是getA和getB,你可以从combine返回有符号int,但是输入需要0 -extend,所以在C中你需要它们在扩大之前是无符号的short。比如((unsigned)(unsigned空头)A << 16) | (unsigned空头)B
你可能想要使用uint16_t和uint32_t,来定义类型宽度,以匹配你正在使用的移位计数。
假设a是第一个,b是第二个。设p是a+1个质数,q是b+1个质数
然后,如果a<b,结果是pq,如果a>b,结果是2pq。如果a=b,让它是p^2。
给定正整数A和B,设D = A的位数,E= B的位数 结果可以是D, 0, E, 0, a和B的串联。
示例:A = 300, B = 12。D = 3, E=2 result = 302030012。 这利用了一个事实,即唯一以0开头的数字是0,
优点:易于编码,易于解码,人类可读,有效数字可以先比较,潜在的比较无需计算,简单的错误检查。
缺点:结果的大小是个问题。不过没关系,我们为什么要在电脑里存储无界整数呢。