我如何才能找到某一列的值是最大的行?

df.max()会给我每一列的最大值,我不知道如何得到相应的行。


当前回答

df.iloc[df['columnX'].argmax()]

argmax()将为columnX提供与max值对应的索引。iloc可以用来获取该索引的DataFrame df的行。

其他回答

df.iloc[df['columnX'].argmax()]

argmax()将为columnX提供与max值对应的索引。iloc可以用来获取该索引的DataFrame df的行。

DataFrame的idmax返回具有最大值的行的标签索引,argmax的行为取决于pandas的版本(现在它返回一个警告)。如果您想使用位置索引,您可以执行以下操作:

max_row = df['A'].values.argmax()

or

import numpy as np
max_row = np.argmax(df['A'].values)

请注意,如果使用np.argmax(df['A']),其行为与df['A'].argmax()相同。

如果有多行取最大值,上述两个答案都只返回一个索引。如果你想要所有的行,似乎没有一个函数。 但这并不难做到。下面是一个Series的例子;DataFrame也可以这样做:

In [1]: from pandas import Series, DataFrame

In [2]: s=Series([2,4,4,3],index=['a','b','c','d'])

In [3]: s.idxmax()
Out[3]: 'b'

In [4]: s[s==s.max()]
Out[4]: 
b    4
c    4
dtype: int64

如果你想要整行而不仅仅是id,你可以使用df。nbiggest和传递你想要多少“top”行,你也可以传递你想要它的列/列。

df.nlargest(2,['A'])

会给出A的前两个值对应的行。

使用df。最小值为nminimal。

直接的“.argmax()”解决方案不适合我。

前面的例子由@ely提供

>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
      A         B         C
0  1.232853 -1.979459 -0.573626
1  0.140767  0.394940  1.068890
2  0.742023  1.343977 -0.579745
3  2.125299 -0.649328 -0.211692
4 -0.187253  1.908618 -1.862934
>>> df['A'].argmax()
3
>>> df['B'].argmax()
4
>>> df['C'].argmax()
1

返回以下消息:

FutureWarning: 'argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax' 
will be corrected to return the positional maximum in the future.
Use 'series.values.argmax' to get the position of the maximum now.

所以我的解是:

df['A'].values.argmax()