我如何才能找到某一列的值是最大的行?

df.max()会给我每一列的最大值,我不知道如何得到相应的行。


当前回答

直接的“.argmax()”解决方案不适合我。

前面的例子由@ely提供

>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
      A         B         C
0  1.232853 -1.979459 -0.573626
1  0.140767  0.394940  1.068890
2  0.742023  1.343977 -0.579745
3  2.125299 -0.649328 -0.211692
4 -0.187253  1.908618 -1.862934
>>> df['A'].argmax()
3
>>> df['B'].argmax()
4
>>> df['C'].argmax()
1

返回以下消息:

FutureWarning: 'argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax' 
will be corrected to return the positional maximum in the future.
Use 'series.values.argmax' to get the position of the maximum now.

所以我的解是:

df['A'].values.argmax()

其他回答

非常简单:我们有如下所示的df,我们想在C中打印一行max值:

A  B  C
x  1  4
y  2  10
z  5  9

In:

df.loc[df['C'] == df['C'].max()]   # condition check

Out:

A B C
y 2 10

直接的“.argmax()”解决方案不适合我。

前面的例子由@ely提供

>>> import pandas
>>> import numpy as np
>>> df = pandas.DataFrame(np.random.randn(5,3),columns=['A','B','C'])
>>> df
      A         B         C
0  1.232853 -1.979459 -0.573626
1  0.140767  0.394940  1.068890
2  0.742023  1.343977 -0.579745
3  2.125299 -0.649328 -0.211692
4 -0.187253  1.908618 -1.862934
>>> df['A'].argmax()
3
>>> df['B'].argmax()
4
>>> df['C'].argmax()
1

返回以下消息:

FutureWarning: 'argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax' 
will be corrected to return the positional maximum in the future.
Use 'series.values.argmax' to get the position of the maximum now.

所以我的解是:

df['A'].values.argmax()

如果最大值中有联系,那么idxmax只返回第一个最大值的索引。例如,在下面的DataFrame中:

   A  B  C
0  1  0  1
1  0  0  1
2  0  0  0
3  0  1  1
4  1  0  0

idxmax回报

A    0
B    3
C    0
dtype: int64

现在,如果我们想要所有的索引都对应于max值,那么我们可以使用max + eq来创建一个布尔DataFrame,然后在df上使用它。Index来过滤索引:

out = df.eq(df.max()).apply(lambda x: df.index[x].tolist())

输出:

A       [0, 4]
B          [3]
C    [0, 1, 3]
dtype: object
df.iloc[df['columnX'].argmax()]

argmax()将为columnX提供与max值对应的索引。iloc可以用来获取该索引的DataFrame df的行。

DataFrame的idmax返回具有最大值的行的标签索引,argmax的行为取决于pandas的版本(现在它返回一个警告)。如果您想使用位置索引,您可以执行以下操作:

max_row = df['A'].values.argmax()

or

import numpy as np
max_row = np.argmax(df['A'].values)

请注意,如果使用np.argmax(df['A']),其行为与df['A'].argmax()相同。