在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
当前回答
monad是一种将共享共同上下文的计算组合在一起的方法。这就像建立一个管道网络。当构建网络时,没有数据流过它。但是当我用“bind”和“return”将所有位拼接在一起后,我调用类似runMyMonad monad数据的东西,数据流过管道。
其他回答
[免责声明:我仍在努力完全了解monads。以下是我目前所了解的情况。如果这是错误的,希望有有知识的人会在地毯上给我打电话。]
Arnar写道:
Monads只是一种包装东西的方法,它提供了对包装好的东西进行操作而不展开的方法。
正是这样。想法是这样的:
你需要一些价值,并用一些附加信息来包装它。就像值是某种类型的(例如整数或字符串)一样,附加信息也是某种类型的。例如,该额外信息可能是“可能”或“IO”。然后,您有一些运算符,允许您在携带附加信息的同时对打包的数据进行操作。这些运算符使用附加信息来决定如何更改包装值上的操作行为。例如,Maybe Int可以是Just Int或Nothing。现在,如果您将Maybe Int添加到Maybe Int,则运算符将检查它们是否都是内部的Just Int,如果是,则将展开Int,将其传递给加法运算符,将生成的Int重新包装为新的Just Int(这是有效的Maybe Int),从而返回Maybe Int。但如果其中一个是内部的Nothing,则该运算符将立即返回Nothing,这也是一个有效的Maybe Int。这样,你可以假装Maybe Ints只是正常的数字,并对它们进行常规运算。如果你得到了一个Nothing,你的方程仍然会产生正确的结果——而不必到处乱检查Nothing。
但这个例子正是Maybe所发生的事情。如果额外的信息是IO,那么将调用为IO定义的特殊运算符,并且在执行添加之前,它可以执行完全不同的操作。(好吧,将两个IO Int加在一起可能是荒谬的——我还不确定。)
基本上,“monad”大致意思是“模式”。但是,您现在有了一种语言构造(语法和所有),可以将新模式声明为程序中的东西,而不是一本充满了非正式解释和专门命名的模式的书。(这里的不精确之处在于所有模式都必须遵循特定的形式,因此monad不像模式那样通用。但我认为这是大多数人都知道和理解的最接近的术语。)
这就是为什么人们觉得单子如此令人困惑:因为它们是一个通用的概念。问是什么使某物成为monad与问是什么让某物成为模式类似。
但是想想在语言中对模式的概念提供语法支持的含义:你不必阅读“四人帮”一书,记住特定模式的构造,只需编写一次代码,以不可知的通用方式实现这个模式,然后就完成了!然后,您可以重用此模式,如Visitor或Strategy或Façade等,只需用它装饰代码中的操作,而无需反复重新实现它!
所以,这就是为什么理解monad的人会发现它们如此有用的原因:这并不是知识势利者以理解为荣的象牙塔概念(好吧,当然也是如此,teehee),而是实际上让代码更简单。
如果你要求对如此抽象的东西做出简洁、实用的解释,那么你只能希望得到一个抽象的答案:
a -> b
是表示从as到bs的计算的一种方式。您可以将计算链接起来,也可以将它们组合在一起:
(b -> c) -> (a -> b) -> (a -> c)
更复杂的计算需要更复杂的类型,例如:
a -> f b
是从as到bs到fs的计算类型。您还可以编写它们:
(b -> f c) -> (a -> f b) -> (a -> f c)
事实证明,这种模式无处不在,并且与上面的第一个组合具有相同的财产(结合性、右-和左-同一性)。
人们必须给这个模式起一个名字,但如果知道第一个组合被正式描述为半群体,这会有帮助吗?
“单子和圆括号一样有趣和重要”(奥列格·基斯廖夫)
在Scala的上下文中,您会发现以下是最简单的定义。基本上,flatMap(或bind)是“关联”的,并且存在一个标识。
trait M[+A] {
def flatMap[B](f: A => M[B]): M[B] // AKA bind
// Pseudo Meta Code
def isValidMonad: Boolean = {
// for every parameter the following holds
def isAssociativeOn[X, Y, Z](x: M[X], f: X => M[Y], g: Y => M[Z]): Boolean =
x.flatMap(f).flatMap(g) == x.flatMap(f(_).flatMap(g))
// for every parameter X and x, there exists an id
// such that the following holds
def isAnIdentity[X](x: M[X], id: X => M[X]): Boolean =
x.flatMap(id) == x
}
}
E.g.
// These could be any functions
val f: Int => Option[String] = number => if (number == 7) Some("hello") else None
val g: String => Option[Double] = string => Some(3.14)
// Observe these are identical. Since Option is a Monad
// they will always be identical no matter what the functions are
scala> Some(7).flatMap(f).flatMap(g)
res211: Option[Double] = Some(3.14)
scala> Some(7).flatMap(f(_).flatMap(g))
res212: Option[Double] = Some(3.14)
// As Option is a Monad, there exists an identity:
val id: Int => Option[Int] = x => Some(x)
// Observe these are identical
scala> Some(7).flatMap(id)
res213: Option[Int] = Some(7)
scala> Some(7)
res214: Some[Int] = Some(7)
注:严格地说,函数编程中的Monad的定义与范畴理论中的Monard的定义不同,后者是按映射和展平的顺序定义的。尽管它们在某些映射下是等价的。这个演示非常好:http://www.slideshare.net/samthemonad/monad-presentation-scala-as-a-category
世界需要的是另一篇monad博客文章,但我认为这对识别野外现存的monad很有用。
单子是分形
上面是一个叫做Sierpinski三角形的分形,这是我唯一记得画的分形。分形是与上述三角形相似的自相似结构,其中部分与整体相似(在这种情况下,正好是母三角形比例的一半)。单子是分形。给定一个一元数据结构,它的值可以组合成数据结构的另一个值。这就是为什么它对编程有用,这也是为什么它在许多情况下都会出现。
monad是用于封装状态变化的对象的东西。在不允许您具有可修改状态的语言(例如,Haskell)中最常遇到这种情况。
例如文件I/O。
您将能够使用文件I/O的monad来将不断变化的状态本质与使用monad的代码隔离开来。Monad内部的代码可以有效地忽略Monad外部世界的变化状态,这使您更容易理解程序的整体效果。