在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
当前回答
如果你要求对如此抽象的东西做出简洁、实用的解释,那么你只能希望得到一个抽象的答案:
a -> b
是表示从as到bs的计算的一种方式。您可以将计算链接起来,也可以将它们组合在一起:
(b -> c) -> (a -> b) -> (a -> c)
更复杂的计算需要更复杂的类型,例如:
a -> f b
是从as到bs到fs的计算类型。您还可以编写它们:
(b -> f c) -> (a -> f b) -> (a -> f c)
事实证明,这种模式无处不在,并且与上面的第一个组合具有相同的财产(结合性、右-和左-同一性)。
人们必须给这个模式起一个名字,但如果知道第一个组合被正式描述为半群体,这会有帮助吗?
“单子和圆括号一样有趣和重要”(奥列格·基斯廖夫)
其他回答
第一:如果你不是数学家,monad这个词有点空洞。另一个术语是计算构建器,它更能描述它们的实际用途。
它们是链接操作的模式。它看起来有点像面向对象语言中的方法链接,但机制略有不同。
该模式主要用于函数式语言(特别是Haskell,它普遍使用monad),但也可以用于支持高阶函数的任何语言(即可以将其他函数作为参数的函数)。
JavaScript中的数组支持该模式,因此让我们将其作为第一个示例。
模式的要点是我们有一个类型(在本例中为Array),它有一个以函数作为参数的方法。提供的操作必须返回相同类型的实例(即返回数组)。
首先是一个不使用monad模式的方法链接示例:
[1,2,3].map(x => x + 1)
结果是[2,3,4]。代码不符合monad模式,因为我们作为参数提供的函数返回的是数字,而不是数组。monad形式的相同逻辑是:
[1,2,3].flatMap(x => [x + 1])
这里我们提供了一个返回Array的操作,所以现在它符合模式。flatMap方法为数组中的每个元素执行提供的函数。它期望每个调用都有一个数组作为结果(而不是单个值),但将得到的数组集合并为一个数组。所以最终的结果是相同的,数组[2,3,4]。
(提供给map或flatMap等方法的函数参数在JavaScript中通常称为“回调”。我将其称为“操作”,因为它更通用。)
如果我们连锁多个操作(以传统方式):
[1,2,3].map(a => a + 1).filter(b => b != 3)
数组中的结果[2,4]
monad形式的相同链接:
[1,2,3].flatMap(a => [a + 1]).flatMap(b => b != 3 ? [b] : [])
产生相同的结果,即数组[2,4]。
您将立即注意到monad格式比非monad格式更难看!这正好表明单子不一定“好”。它们是一种有时有益有时不有益的模式。
请注意,monad模式可以以不同的方式组合:
[1,2,3].flatMap(a => [a + 1].flatMap(b => b != 3 ? [b] : []))
这里的绑定是嵌套的,而不是链式的,但结果是一样的。这是单子的一个重要属性,我们稍后会看到。这意味着组合的两个操作可以被视为单个操作。
该操作允许返回具有不同元素类型的数组,例如,将数字数组转换为字符串数组或其他东西;只要它仍然是一个数组。
这可以使用Typescript表示法更正式地描述。数组的类型为array<T>,其中T是数组中元素的类型。flatMap()方法接受类型为T=>Array<U>的函数参数,并返回一个Array<U>。
一般来说,monad是任何类型的Foo<Bar>,它有一个“bind”方法,该方法接受类型为Bar=>Foo<Baz>的函数参数,并返回一个Foo<Baz>。
这回答了单子是什么。这个答案的其余部分将试图通过示例来解释为什么monads在Haskell这样的语言中是一种有用的模式,而Haskell对monads有很好的支持。
Haskell和Do表示法
要将map/filter示例直接转换为Haskell,我们将flatMap替换为>>=运算符:
[1,2,3] >>= \a -> [a+1] >>= \b -> if b == 3 then [] else [b]
>>=运算符是Haskell中的绑定函数。当操作数是一个列表时,它与JavaScript中的flatMap相同,但对于其他类型,它被重载了不同的含义。
但是Haskell还为monad表达式提供了专用语法do块,它完全隐藏了绑定运算符:
do a <- [1,2,3]
b <- [a+1]
if b == 3 then [] else [b]
这将隐藏“管道”,并让您专注于在每个步骤中应用的实际操作。
在do块中,每一行都是一个操作。约束仍然认为块中的所有操作都必须返回相同的类型。因为第一个表达式是一个列表,所以其他操作也必须返回一个列表。
向后箭头<-看起来像赋值,但请注意,这是绑定中传递的参数。因此,当右侧的表达式是整数列表时,左侧的变量将是一个整数,但将对列表中的每个整数执行。
示例:安全导航(Maybe类型)
关于列表,让我们来看看monad模式如何对其他类型有用。
某些函数可能不总是返回有效值。在Haskell中,这由Maybe类型表示,该类型是Just value或Nothing选项。
总是返回有效值的链接操作当然很简单:
streetName = getStreetName (getAddress (getUser 17))
但如果任何函数都可以返回Nothing呢?我们需要单独检查每个结果,如果不是Nothing,则只将值传递给下一个函数:
case getUser 17 of
Nothing -> Nothing
Just user ->
case getAddress user of
Nothing -> Nothing
Just address ->
getStreetName address
很多重复检查!想象一下如果链条更长。Haskell用Maybe的monad模式解决了这个问题:
do
user <- getUser 17
addr <- getAddress user
getStreetName addr
这个do块调用Maybe类型的绑定函数(因为第一个表达式的结果是Maybe)。绑定函数仅在值为Just值时执行以下操作,否则只传递Nothing。
这里使用monad模式来避免重复代码。这与其他一些语言使用宏来简化语法的方式类似,尽管宏以非常不同的方式实现了相同的目标。
请注意,Haskell中monad模式和monad友好语法的结合导致了代码更干净。在JavaScript这样的语言中,如果没有对monad的任何特殊语法支持,我怀疑monad模式是否能够在这种情况下简化代码。
可变状态
Haskell不支持可变状态。所有变量都是常量,所有值都是不可变的。但State类型可用于模拟具有可变状态的编程:
add2 :: State Integer Integer
add2 = do
-- add 1 to state
x <- get
put (x + 1)
-- increment in another way
modify (+1)
-- return state
get
evalState add2 7
=> 9
add2函数构建一个monad链,然后以7作为初始状态对其求值。
显然,这在Haskell中才有意义。其他语言支持开箱即用的可变状态。Haskell通常在语言特性上是“选择加入”的——您可以在需要时启用可变状态,并且类型系统确保效果是显式的。IO是这方面的另一个例子。
IO
IO类型用于链接和执行“不纯”函数。
与任何其他实用语言一样,Haskell有一系列与外界接口的内置函数:putStrLine、readLine等。这些函数被称为“不纯”,因为它们要么会产生副作用,要么会产生不确定性的结果。即使是像获取时间这样简单的事情也被认为是不纯洁的,因为结果是不确定的——用相同的参数调用两次可能会返回不同的值。
纯函数是确定性的——它的结果完全取决于传递的参数,除了返回值之外,它对环境没有任何副作用。
Haskell大力鼓励使用纯函数——这是该语言的一个主要卖点。不幸的是,对于纯粹主义者来说,你需要一些不纯的函数来做任何有用的事情。Haskell折衷方案是将纯函数和不纯函数彻底分开,并保证纯函数无法直接或间接执行不纯函数。
这是通过给所有不纯函数赋予IO类型来保证的。Haskell程序的入口点是具有IO类型的主函数,因此我们可以在顶层执行不纯的函数。
但是该语言如何防止纯函数执行不纯函数?这是因为Haskell的懒惰本性。只有当某个函数的输出被其他函数消耗时,才执行该函数。但除了将IO值分配给main之外,没有办法使用它。因此,如果一个函数想要执行一个不纯的函数,它必须连接到main并具有IO类型。
对IO操作使用monad链接还可以确保它们以线性和可预测的顺序执行,就像命令式语言中的语句一样。
这让我们看到大多数人会用Haskell编写的第一个程序:
main :: IO ()
main = do
putStrLn ”Hello World”
当只有一个操作,因此没有什么要绑定时,do关键字是多余的,但为了保持一致性,我还是保留了它。
()类型表示“无效”。这种特殊的返回类型仅适用于因其副作用而调用的IO函数。
更长的示例:
main = do
putStrLn "What is your name?"
name <- getLine
putStrLn "hello" ++ name
这构建了一个IO操作链,因为它们被分配给主功能,所以它们被执行。
将IO与Maybe进行比较表明了monad模式的多功能性。对于Maybe,该模式用于通过将条件逻辑移动到绑定函数来避免重复代码。对于IO,该模式用于确保IO类型的所有操作都是有序的,并且IO操作不会“泄漏”到纯函数。
总结
在我的主观看法中,monad模式只有在对该模式有一些内置支持的语言中才真正有价值。否则,它只会导致过于复杂的代码。但是Haskell(和其他一些语言)有一些内置支持,隐藏了繁琐的部分,然后该模式可以用于各种有用的事情。喜欢:
避免重复代码(可能)为程序的分隔区域添加可变状态或异常等语言特性。将讨厌的东西与美好的东西隔离开来(IO)嵌入式域特定语言(解析器)将GOTO添加到语言中。
世界需要的是另一篇monad博客文章,但我认为这对识别野外现存的monad很有用。
单子是分形
上面是一个叫做Sierpinski三角形的分形,这是我唯一记得画的分形。分形是与上述三角形相似的自相似结构,其中部分与整体相似(在这种情况下,正好是母三角形比例的一半)。单子是分形。给定一个一元数据结构,它的值可以组合成数据结构的另一个值。这就是为什么它对编程有用,这也是为什么它在许多情况下都会出现。
在Scala的上下文中,您会发现以下是最简单的定义。基本上,flatMap(或bind)是“关联”的,并且存在一个标识。
trait M[+A] {
def flatMap[B](f: A => M[B]): M[B] // AKA bind
// Pseudo Meta Code
def isValidMonad: Boolean = {
// for every parameter the following holds
def isAssociativeOn[X, Y, Z](x: M[X], f: X => M[Y], g: Y => M[Z]): Boolean =
x.flatMap(f).flatMap(g) == x.flatMap(f(_).flatMap(g))
// for every parameter X and x, there exists an id
// such that the following holds
def isAnIdentity[X](x: M[X], id: X => M[X]): Boolean =
x.flatMap(id) == x
}
}
E.g.
// These could be any functions
val f: Int => Option[String] = number => if (number == 7) Some("hello") else None
val g: String => Option[Double] = string => Some(3.14)
// Observe these are identical. Since Option is a Monad
// they will always be identical no matter what the functions are
scala> Some(7).flatMap(f).flatMap(g)
res211: Option[Double] = Some(3.14)
scala> Some(7).flatMap(f(_).flatMap(g))
res212: Option[Double] = Some(3.14)
// As Option is a Monad, there exists an identity:
val id: Int => Option[Int] = x => Some(x)
// Observe these are identical
scala> Some(7).flatMap(id)
res213: Option[Int] = Some(7)
scala> Some(7)
res214: Some[Int] = Some(7)
注:严格地说,函数编程中的Monad的定义与范畴理论中的Monard的定义不同,后者是按映射和展平的顺序定义的。尽管它们在某些映射下是等价的。这个演示非常好:http://www.slideshare.net/samthemonad/monad-presentation-scala-as-a-category
Monoid似乎可以确保在Monoid和受支持的类型上定义的所有操作始终返回Monoid内部的受支持类型。任何数字+任何数字=一个数字,没有错误。
而除法接受两个分数,并返回一个分数,该分数在haskell somewhy中将除以零定义为无穷大(恰好是分数somewhy)。。。
在任何情况下,Monads似乎只是一种确保您的操作链以可预测的方式运行的方法,而一个声称为Num->Num的函数,由另一个用x调用的Num->Num的函数组成,并不意味着发射导弹。
另一方面,如果我们有一个功能可以发射导弹,我们可以将它与其他功能组合起来,也可以发射导弹。
在Haskell中,main的类型是IO()或IO[()],这种区分很奇怪,我不会讨论它,但我认为会发生以下情况:
如果我有main,我希望它做一系列动作,我运行程序的原因是产生一个效果——通常是通过IO。因此,我可以将IO操作串联在一起,以便——做IO,而不是其他。
如果我尝试做一些不“返回IO”的事情,程序会抱怨链不流动,或者基本上“这与我们正在尝试做的事情有什么关系——IO动作”,这似乎迫使程序员保持思路,不偏离并思考发射导弹,同时创建排序算法——不流动。
基本上,Monads似乎是编译器的一个提示,“嘿,你知道这个函数在这里返回一个数字,它实际上并不总是有效的,它有时会产生一个number,有时什么都没有,请记住这一点”。知道了这一点,如果你试图断言一个单元动作,单元动作可能会作为一个编译时异常,说“嘿,这实际上不是一个数字,这可能是一个数字。但你不能假设这一点。做一些事情以确保流是可接受的。”这在一定程度上防止了不可预测的程序行为。
似乎monad不是关于纯粹性,也不是关于控制,而是关于维护一个类别的身份,在这个类别上,所有行为都是可预测和定义的,或者不编译。当你被要求做某事时,你不能什么都不做,如果你被要求什么都不干(可见),你也不能做。
我能想到的Monads的最大原因是——看看程序/OOP代码,你会发现你不知道程序从哪里开始,也不知道程序的结束,你看到的只是大量的跳跃和大量的数学、魔法和导弹。您将无法维护它,如果可以的话,您将花费大量的时间来思考整个程序,然后才能理解其中的任何部分,因为在这种情况下,模块化是基于代码的相互依赖的“部分”,其中代码被优化为尽可能相关,以保证效率/相互关系。单子是非常具体的,并且通过定义得到了很好的定义,并确保程序流程可以进行分析,并隔离难以分析的部分——因为它们本身就是单子。monad似乎是一个“可理解的单元,它在完全理解时是可预测的”——如果你理解“可能”monad,那么它除了“可能”之外就没有可能做任何事情,这看起来微不足道,但在大多数非monad代码中,一个简单的函数“helloworld”可以发射导弹,什么都不做,或者摧毁宇宙,甚至扭曲时间——我们不知道也不能保证它是什么样子。一个单子保证它就是什么样子。这是非常强大的。
“现实世界”中的所有事物似乎都是单子,因为它受到防止混淆的明确可观察规律的约束。这并不意味着我们必须模仿这个对象的所有操作来创建类,相反,我们可以简单地说“一个正方形就是一个正方形”,只不过是一个正方形,甚至不是矩形或圆形,和“一个正方形的面积是它现有维度的长度乘以它自身的面积。无论你有什么正方形,如果它是2D空间中的正方形,它的面积绝对不能是任何东西,只有它的长度平方,这几乎是微不足道的。这是非常强大的,因为我们不需要断言我们的世界是这样的,我们只需要使用现实的含义来预测它。”防止我们的节目偏离轨道。
我几乎可以肯定是错的,但我认为这可以帮助一些人,所以希望它能帮助一些人。
如果我理解正确的话,IEnumerable是从monad派生出来的。我想知道,对于我们这些来自C#世界的人来说,这可能是一个有趣的视角吗?
值得一提的是,这里有一些帮助我的教程链接(不,我还不知道单子是什么)。
http://osteele.com/archives/2007/12/overloading-semicolonhttp://spbhug.folding-maps.org/wiki/MonadsEnhttp://www.loria.fr/~kow/monads/