在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
当前回答
如果我理解正确的话,IEnumerable是从monad派生出来的。我想知道,对于我们这些来自C#世界的人来说,这可能是一个有趣的视角吗?
值得一提的是,这里有一些帮助我的教程链接(不,我还不知道单子是什么)。
http://osteele.com/archives/2007/12/overloading-semicolonhttp://spbhug.folding-maps.org/wiki/MonadsEnhttp://www.loria.fr/~kow/monads/
其他回答
公主对F#计算表达式的解释帮助了我,尽管我仍然不能说我真的理解了。
编辑:这个系列-用javascript解释monad-对我来说是一个“打破平衡”的系列。
http://blog.jcoglan.com/2011/03/05/translation-from-haskell-to-javascript-of-selected-portions-of-the-best-introduction-to-monads-ive-ever-read/http://blog.jcoglan.com/2011/03/06/monad-syntax-for-javascript/http://blog.jcoglan.com/2011/03/11/promises-are-the-monad-of-asynchronous-programming/
我认为理解单子是一件让你毛骨悚然的事。从这个意义上说,尽可能多地阅读“教程”是一个好主意,但通常奇怪的东西(不熟悉的语言或语法)会让你的大脑无法专注于基本内容。
有些事情我很难理解:
基于规则的解释对我来说从未奏效,因为大多数实际示例实际上需要的不仅仅是返回/绑定。此外,称之为规则也无济于事。这更像是“有些东西有共同点,我们把它们称为‘单子’,把共同点称为‘规则’”。Return(a->M<a>)和Bind(M<a>->(a->M<b>)->M<b>)很好,但我永远无法理解Bind如何从M<a>中提取a,以便将其传递给a->M<b>。我不认为我在任何地方读过(也许这对其他人来说都很明显),Return(M<a>->a)的反面必须存在于monad内部,它只是不需要暴露。
一个非常简单的答案是:
Monad是一种抽象,它为封装值、计算新的封装值和展开封装值提供了接口。
它们在实践中的方便之处在于,它们提供了一个统一的接口,用于创建建模状态而非状态的数据类型。
必须理解Monad是一种抽象,即用于处理某种数据结构的抽象接口。然后,该接口用于构建具有一元行为的数据类型。
你可以在Ruby中的Monads中找到一个非常好且实用的介绍,第1部分:简介。
monad实际上是“类型运算符”的一种形式。它将做三件事。首先,它会将一种类型的值“包装”(或以其他方式转换)为另一种类型(通常称为“一元类型”)。第二,它将使底层类型上的所有操作(或函数)在monadic类型上可用。最后,它将为将自身与另一个monad组合以生成复合monad提供支持。
“可能monad”本质上等同于Visual Basic/C#中的“可为null的类型”。它接受不可为null的类型“T”并将其转换为“可为null<T>”,然后定义所有二进制运算符在可为null><T>上的含义。
副作用也有类似的表现。创建了一个结构,该结构包含函数返回值旁边的副作用描述。当值在函数之间传递时,“提升”操作会复制副作用。
它们被称为“monad”,而不是更容易理解的“类型运算符”的名称,原因如下:
Monad对他们的行为有限制(详见定义)。这些限制,加上涉及三个运算,符合范畴理论中一个叫做monad的结构,这是一个模糊的数学分支。它们是由“纯”函数语言的支持者设计的纯函数语言的支持者,如模糊的数学分支由于数学晦涩难懂,而且monad与特定的编程风格相关,人们倾向于使用monad这个词作为一种秘密握手。正因为如此,没有人费心去投资一个更好的名字。
在Scala的上下文中,您会发现以下是最简单的定义。基本上,flatMap(或bind)是“关联”的,并且存在一个标识。
trait M[+A] {
def flatMap[B](f: A => M[B]): M[B] // AKA bind
// Pseudo Meta Code
def isValidMonad: Boolean = {
// for every parameter the following holds
def isAssociativeOn[X, Y, Z](x: M[X], f: X => M[Y], g: Y => M[Z]): Boolean =
x.flatMap(f).flatMap(g) == x.flatMap(f(_).flatMap(g))
// for every parameter X and x, there exists an id
// such that the following holds
def isAnIdentity[X](x: M[X], id: X => M[X]): Boolean =
x.flatMap(id) == x
}
}
E.g.
// These could be any functions
val f: Int => Option[String] = number => if (number == 7) Some("hello") else None
val g: String => Option[Double] = string => Some(3.14)
// Observe these are identical. Since Option is a Monad
// they will always be identical no matter what the functions are
scala> Some(7).flatMap(f).flatMap(g)
res211: Option[Double] = Some(3.14)
scala> Some(7).flatMap(f(_).flatMap(g))
res212: Option[Double] = Some(3.14)
// As Option is a Monad, there exists an identity:
val id: Int => Option[Int] = x => Some(x)
// Observe these are identical
scala> Some(7).flatMap(id)
res213: Option[Int] = Some(7)
scala> Some(7)
res214: Some[Int] = Some(7)
注:严格地说,函数编程中的Monad的定义与范畴理论中的Monard的定义不同,后者是按映射和展平的顺序定义的。尽管它们在某些映射下是等价的。这个演示非常好:http://www.slideshare.net/samthemonad/monad-presentation-scala-as-a-category
遵循您简短、简洁、实用的指示:
理解monad最简单的方法是在上下文中应用/组合函数。假设你有两个计算,它们都可以看作是两个数学函数f和g。
f取一个String并生成另一个String(取前两个字母)g获取一个String并生成另一个String(大写转换)
因此,在任何语言中,“取前两个字母并将其转换为大写”的转换都会写成g(f(“某个字符串”))。因此,在纯完美函数的世界中,合成只是:先做一件事,然后再做另一件事。
但假设我们生活在一个功能可能失败的世界中。例如:输入字符串可能有一个字符长,因此f将失败。所以在这种情况下
f获取一个String并生成一个String或Nothing。g仅在f未失败时生成字符串。否则,将不生成任何内容
所以现在,g(f(“somestring”))需要一些额外的检查:“计算f,如果它失败,那么g应该返回Nothing,否则计算g”
此思想可应用于任何参数化类型,如下所示:
让Context[Sometype]是Context中Sometype的计算。考虑功能
f: :AnyType->上下文[Sometype]g: :某些类型->上下文[AnyOtherType]
合成g(f())应该读作“compute f。在这个上下文中,做一些额外的计算,然后计算g,如果它在上下文中有意义”