在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

但是,你本可以发明蒙纳斯!

sigfpe说:但所有这些都将单子介绍为需要解释的深奥的东西。但我想说的是,它们一点都不深奥。事实上,面对函数式编程中的各种问题,你会不可避免地被引向某些解决方案,所有这些都是单子的例子。事实上,如果你还没有发明,我希望你现在就发明它们。这是注意到所有这些解决方案实际上都是变相的相同解决方案的一小步。读完这篇文章后,你可能会更好地理解单子上的其他文档,因为你会发现你所看到的一切都是你已经发明的。monads试图解决的许多问题都与副作用有关。因此,我们将从它们开始。(请注意,monad让您做的不仅仅是处理副作用,特别是许多类型的容器对象都可以被视为monad。monad的一些介绍发现,很难协调monad的这两种不同用法,并且只关注其中一种。)在命令式编程语言(如C++)中,函数的行为与数学函数完全不同。例如,假设我们有一个C++函数,它接受一个浮点参数并返回一个浮点结果。从表面上看,它可能有点像一个将实数映射到实数的数学函数,但C++函数可以做的不仅仅是返回一个依赖于其参数的数字。它可以读取和写入全局变量的值,也可以将输出写入屏幕并接收用户的输入。然而,在纯函数语言中,函数只能读取在其参数中提供给它的内容,而它对世界产生影响的唯一方式是通过它返回的值。

其他回答

正如丹尼尔·斯皮瓦克(Daniel Spiewak)所解释的,修道院不是隐喻,而是从一种共同模式中产生的一种实用的抽象。

除了上面出色的答案之外,让我为您提供以下文章的链接(由Patrick Thomson撰写),该文章通过将概念与JavaScript库jQuery(及其使用“方法链接”来操作DOM的方式)相关联来解释monads:jQuery是Monad

jQuery文档本身并没有提到术语“monad”,而是谈到了可能更熟悉的“构建器模式”。这并不能改变一个事实,那就是你有一个合适的monad,也许你甚至没有意识到它。

Monad是一种带有特殊机器的盒子,它允许你从两个嵌套的盒子中制作一个普通的盒子,但仍然保持两个盒子的一些形状。

具体来说,它允许您执行连接,类型为Monad m=>m(m a)->m a。

它还需要一个返回操作,它只包装一个值。return::Monad m=>a->m a你也可以说joinunboxes和return wrappes,但join不是Monad m=>m a->a类型的(它不会打开所有Monad,而是打开Monad,Monad在其中)

所以它取一个Monad盒子(Monad m=>,m),里面有一个盒子((m a)),然后生成一个普通盒子(m a。

然而,Monad通常用于(>>=)(口语“bind”)运算符,它本质上只是一个fmap和一个接一个的join。具体而言,

x >>= f = join (fmap f x)
(>>=) :: Monad m => (a -> m b) -> m a -> m b

请注意,函数出现在第二个参数中,而不是fmap。

此外,join=(>>=id)。

为什么这有用?本质上,它允许您在某种框架(Monad)中工作时制作将动作串在一起的程序。

Haskell中Monad的最突出用途是IO Monad。现在,IO是对Haskell中的Action进行分类的类型。在这里,Monad系统是唯一的保存方式(华丽的词):

参考透明度懒惰纯洁

本质上,像getLine::IOString这样的IO操作不能被String替换,因为它总是具有不同的类型。把IO想象成一种神奇的盒子,可以把东西传送给你。然而,仍然只是说getLine::IOString和所有函数都接受IOa会导致混乱,因为可能不需要这些函数。const“üp§”getLine会做什么?(const丢弃第二个参数。const a b=a。)getLine不需要求值,但应该执行IO!这使得行为相当不可预测,也使得类型系统不那么“纯粹”,因为所有函数都将采用a和IOa值。

输入IO Monad。

要将动作串在一起,只需展平嵌套的动作。要将函数应用于IO操作的输出,IO a类型中的a,只需使用(>>=)。

例如,输出输入的行(输出行是一个生成IO操作的函数,匹配右参数>>=):

getLine >>= putStrLn :: IO ()
-- putStrLn :: String -> IO ()

这可以用do环境更直观地写出来:

do line <- getLine
   putStrLn line

本质上,这样的do块:

do x <- a
   y <- b
   z <- f x y
   w <- g z
   h x
   k <- h z
   l k w

…转化为:

a     >>= \x ->
b     >>= \y ->
f x y >>= \z ->
g z   >>= \w ->
h x   >>= \_ ->
h z   >>= \k ->
l k w

还有m>>=\_->f的>>运算符(当框中的值不需要在框中创建新框时)也可以写成a>>b=a>>=constb(consta b=a)

此外,返回运算符是根据IO直觉建模的-它返回一个具有最小上下文的值,在这种情况下没有IO。由于IO a中的a表示返回的类型,这类似于命令式编程语言中的return(a),但它不会停止操作链!f>>=return>>=g与f>>=g相同。仅当您返回的术语在链中较早创建时才有用-请参见上文。

当然,还有其他Monad,否则它不会被称为Monad,它会被称为“IO控制”之类的东西。

例如,List Monad(Monad[])通过串联变平-使(>>=)运算符对列表的所有元素执行函数。这可以被视为“不确定性”,其中列表是许多可能的值,而Monad框架正在进行所有可能的组合。

例如(GHCi):

Prelude> [1, 2, 3] >>= replicate 3  -- Simple binding
[1, 1, 1, 2, 2, 2, 3, 3, 3]
Prelude> concat (map (replicate 3) [1, 2, 3])  -- Same operation, more explicit
[1, 1, 1, 2, 2, 2, 3, 3, 3]
Prelude> [1, 2, 3] >> "uq"
"uququq"
Prelude> return 2 :: [Int]
[2]
Prelude> join [[1, 2], [3, 4]]
[1, 2, 3, 4]

因为:

join a = concat a
a >>= f = join (fmap f a)
return a = [a]  -- or "= (:[])"

如果出现这种情况,“也许莫纳德”只会将所有结果作废为“无”。也就是说,绑定自动检查函数(a>>=f)是否返回或值(a>>>=f)是否为Nothing,然后也返回Nothing。

join       Nothing  = Nothing
join (Just Nothing) = Nothing
join (Just x)       = x
a >>= f             = join (fmap f a)

或者更明确地说:

Nothing  >>= _      = Nothing
(Just x) >>= f      = f x

State Monad用于同时修改某些共享状态-s->(a,s)的函数,因此>>=的参数为:a->s->(a,s)。这个名称有点用词不当,因为State实际上是用于状态修改功能,而不是用于状态——状态本身确实没有有趣的财产,它只是被改变了。

例如:

pop ::       [a] -> (a , [a])
pop (h:t) = (h, t)
sPop = state pop   -- The module for State exports no State constructor,
                   -- only a state function

push :: a -> [a] -> ((), [a])
push x l  = ((), x : l)
sPush = state push

swap = do a <- sPop
          b <- sPop
          sPush a
          sPush b

get2 = do a <- sPop
          b <- sPop
          return (a, b)

getswapped = do swap
                get2

那么:

Main*> runState swap [1, 2, 3]
((), [2, 1, 3])
Main*> runState get2 [1, 2, 3]
((1, 2), [1, 2, 3]
Main*> runState (swap >> get2) [1, 2, 3]
((2, 1), [2, 1, 3])
Main*> runState getswapped [1, 2, 3]
((2, 1), [2, 1, 3])

也:

Prelude> runState (return 0) 1
(0, 1)

如果你要求对如此抽象的东西做出简洁、实用的解释,那么你只能希望得到一个抽象的答案:

a -> b

是表示从as到bs的计算的一种方式。您可以将计算链接起来,也可以将它们组合在一起:

(b -> c) -> (a -> b) -> (a -> c)

更复杂的计算需要更复杂的类型,例如:

a -> f b

是从as到bs到fs的计算类型。您还可以编写它们:

(b -> f c) -> (a -> f b) -> (a -> f c)

事实证明,这种模式无处不在,并且与上面的第一个组合具有相同的财产(结合性、右-和左-同一性)。

人们必须给这个模式起一个名字,但如果知道第一个组合被正式描述为半群体,这会有帮助吗?

“单子和圆括号一样有趣和重要”(奥列格·基斯廖夫)

我将尝试在Haskell的背景下解释Monad。

在函数式编程中,函数组合很重要。它允许我们的程序由小的、易于阅读的函数组成。

假设我们有两个函数:g::Int->String和f::String->Bool。

我们可以做(f.g)x,这与f(gx)相同,其中x是Int值。

当进行合成/将一个函数的结果应用到另一个函数时,使类型匹配是很重要的。在上述情况下,g返回的结果类型必须与f接受的类型相同。

但有时值是在上下文中的,这使得排列类型有点不容易。(在上下文中设置值非常有用。例如,Maybe Int类型表示可能不存在的Int值,IO String类型表示由于执行某些副作用而存在的String值。)

假设我们现在有g1::Int->Maybe String和f1::String->Maybe Bool。g1和f1分别与g和f非常相似。

我们不能做(f1.g1)x或f1(g1 x),其中x是Int值。g1返回的结果类型不是f1期望的类型。

我们可以用。运算符,但现在我们不能用..组合f1和g1。。问题是我们不能直接将上下文中的值传递给期望值不在上下文中的函数。

如果我们引入一个运算符来组合g1和f1,这样我们就可以写出(f1 operator g1)x,这不是很好吗?g1返回上下文中的值。该值将脱离上下文并应用于f1。是的,我们有这样一个操作员。它是<=<。

我们还有一个>>=运算符,它为我们做了完全相同的事情,尽管语法略有不同。

我们写:g1 x>>=f1。g1 x是Maybe Int值。>>=运算符帮助将Int值从“可能不存在”上下文中取出,并将其应用于f1。f1的结果是Maybe Bool,它将是整个>>=操作的结果。

最后,为什么Monad有用?因为Monad是定义>>=运算符的类型类,与定义==和/=运算符的Eq类型类非常相似。

总之,Monad类型类定义了>>=运算符,该运算符允许我们将上下文中的值(我们称为这些monadic值)传递给不需要上下文中值的函数。将考虑上下文。

如果这里需要记住一点,那就是Monads允许在上下文中包含值的函数组合。