在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

Monad是一种带有特殊机器的盒子,它允许你从两个嵌套的盒子中制作一个普通的盒子,但仍然保持两个盒子的一些形状。

具体来说,它允许您执行连接,类型为Monad m=>m(m a)->m a。

它还需要一个返回操作,它只包装一个值。return::Monad m=>a->m a你也可以说joinunboxes和return wrappes,但join不是Monad m=>m a->a类型的(它不会打开所有Monad,而是打开Monad,Monad在其中)

所以它取一个Monad盒子(Monad m=>,m),里面有一个盒子((m a)),然后生成一个普通盒子(m a。

然而,Monad通常用于(>>=)(口语“bind”)运算符,它本质上只是一个fmap和一个接一个的join。具体而言,

x >>= f = join (fmap f x)
(>>=) :: Monad m => (a -> m b) -> m a -> m b

请注意,函数出现在第二个参数中,而不是fmap。

此外,join=(>>=id)。

为什么这有用?本质上,它允许您在某种框架(Monad)中工作时制作将动作串在一起的程序。

Haskell中Monad的最突出用途是IO Monad。现在,IO是对Haskell中的Action进行分类的类型。在这里,Monad系统是唯一的保存方式(华丽的词):

参考透明度懒惰纯洁

本质上,像getLine::IOString这样的IO操作不能被String替换,因为它总是具有不同的类型。把IO想象成一种神奇的盒子,可以把东西传送给你。然而,仍然只是说getLine::IOString和所有函数都接受IOa会导致混乱,因为可能不需要这些函数。const“üp§”getLine会做什么?(const丢弃第二个参数。const a b=a。)getLine不需要求值,但应该执行IO!这使得行为相当不可预测,也使得类型系统不那么“纯粹”,因为所有函数都将采用a和IOa值。

输入IO Monad。

要将动作串在一起,只需展平嵌套的动作。要将函数应用于IO操作的输出,IO a类型中的a,只需使用(>>=)。

例如,输出输入的行(输出行是一个生成IO操作的函数,匹配右参数>>=):

getLine >>= putStrLn :: IO ()
-- putStrLn :: String -> IO ()

这可以用do环境更直观地写出来:

do line <- getLine
   putStrLn line

本质上,这样的do块:

do x <- a
   y <- b
   z <- f x y
   w <- g z
   h x
   k <- h z
   l k w

…转化为:

a     >>= \x ->
b     >>= \y ->
f x y >>= \z ->
g z   >>= \w ->
h x   >>= \_ ->
h z   >>= \k ->
l k w

还有m>>=\_->f的>>运算符(当框中的值不需要在框中创建新框时)也可以写成a>>b=a>>=constb(consta b=a)

此外,返回运算符是根据IO直觉建模的-它返回一个具有最小上下文的值,在这种情况下没有IO。由于IO a中的a表示返回的类型,这类似于命令式编程语言中的return(a),但它不会停止操作链!f>>=return>>=g与f>>=g相同。仅当您返回的术语在链中较早创建时才有用-请参见上文。

当然,还有其他Monad,否则它不会被称为Monad,它会被称为“IO控制”之类的东西。

例如,List Monad(Monad[])通过串联变平-使(>>=)运算符对列表的所有元素执行函数。这可以被视为“不确定性”,其中列表是许多可能的值,而Monad框架正在进行所有可能的组合。

例如(GHCi):

Prelude> [1, 2, 3] >>= replicate 3  -- Simple binding
[1, 1, 1, 2, 2, 2, 3, 3, 3]
Prelude> concat (map (replicate 3) [1, 2, 3])  -- Same operation, more explicit
[1, 1, 1, 2, 2, 2, 3, 3, 3]
Prelude> [1, 2, 3] >> "uq"
"uququq"
Prelude> return 2 :: [Int]
[2]
Prelude> join [[1, 2], [3, 4]]
[1, 2, 3, 4]

因为:

join a = concat a
a >>= f = join (fmap f a)
return a = [a]  -- or "= (:[])"

如果出现这种情况,“也许莫纳德”只会将所有结果作废为“无”。也就是说,绑定自动检查函数(a>>=f)是否返回或值(a>>>=f)是否为Nothing,然后也返回Nothing。

join       Nothing  = Nothing
join (Just Nothing) = Nothing
join (Just x)       = x
a >>= f             = join (fmap f a)

或者更明确地说:

Nothing  >>= _      = Nothing
(Just x) >>= f      = f x

State Monad用于同时修改某些共享状态-s->(a,s)的函数,因此>>=的参数为:a->s->(a,s)。这个名称有点用词不当,因为State实际上是用于状态修改功能,而不是用于状态——状态本身确实没有有趣的财产,它只是被改变了。

例如:

pop ::       [a] -> (a , [a])
pop (h:t) = (h, t)
sPop = state pop   -- The module for State exports no State constructor,
                   -- only a state function

push :: a -> [a] -> ((), [a])
push x l  = ((), x : l)
sPush = state push

swap = do a <- sPop
          b <- sPop
          sPush a
          sPush b

get2 = do a <- sPop
          b <- sPop
          return (a, b)

getswapped = do swap
                get2

那么:

Main*> runState swap [1, 2, 3]
((), [2, 1, 3])
Main*> runState get2 [1, 2, 3]
((1, 2), [1, 2, 3]
Main*> runState (swap >> get2) [1, 2, 3]
((2, 1), [2, 1, 3])
Main*> runState getswapped [1, 2, 3]
((2, 1), [2, 1, 3])

也:

Prelude> runState (return 0) 1
(0, 1)

其他回答

我也在努力理解单子。这是我的版本:

Monad是关于对重复的事物进行抽象的。首先,monad本身是一个类型化接口(像抽象泛型类),它有两个函数:bind和return,它们定义了签名。然后,我们可以基于抽象的monad创建具体的monad,当然还有绑定和返回的具体实现。此外,绑定和返回必须满足几个不变量,以便可以组合/链接具体的单体。

当我们有接口、类型、类和其他工具来创建抽象时,为什么要创建monad概念?因为monad提供了更多:它们以一种能够在没有任何样板的情况下合成数据的方式强制重新思考问题。

在Scala的上下文中,您会发现以下是最简单的定义。基本上,flatMap(或bind)是“关联”的,并且存在一个标识。

trait M[+A] {
  def flatMap[B](f: A => M[B]): M[B] // AKA bind

  // Pseudo Meta Code
  def isValidMonad: Boolean = {
    // for every parameter the following holds
    def isAssociativeOn[X, Y, Z](x: M[X], f: X => M[Y], g: Y => M[Z]): Boolean =
      x.flatMap(f).flatMap(g) == x.flatMap(f(_).flatMap(g))

    // for every parameter X and x, there exists an id
    // such that the following holds
    def isAnIdentity[X](x: M[X], id: X => M[X]): Boolean =
      x.flatMap(id) == x
  }
}

E.g.

// These could be any functions
val f: Int => Option[String] = number => if (number == 7) Some("hello") else None
val g: String => Option[Double] = string => Some(3.14)

// Observe these are identical. Since Option is a Monad 
// they will always be identical no matter what the functions are
scala> Some(7).flatMap(f).flatMap(g)
res211: Option[Double] = Some(3.14)

scala> Some(7).flatMap(f(_).flatMap(g))
res212: Option[Double] = Some(3.14)


// As Option is a Monad, there exists an identity:
val id: Int => Option[Int] = x => Some(x)

// Observe these are identical
scala> Some(7).flatMap(id)
res213: Option[Int] = Some(7)

scala> Some(7)
res214: Some[Int] = Some(7)

注:严格地说,函数编程中的Monad的定义与范畴理论中的Monard的定义不同,后者是按映射和展平的顺序定义的。尽管它们在某些映射下是等价的。这个演示非常好:http://www.slideshare.net/samthemonad/monad-presentation-scala-as-a-category

解释

当用C#/Java术语解释时,这很简单:

monad是一个接受参数并返回特殊类型的函数。这个monad返回的特殊类型也称为monad。(monad是#1和#2的组合)有一些语法糖可以使调用此函数和类型转换更容易。

实例

monad有助于使函数式程序员的生活更轻松。典型示例:Maye monad接受两个参数,一个值和一个函数。如果传递的值为null,则返回null。否则它将计算函数。如果我们需要一个特殊的返回类型,我们也可以调用这个返回类型Maybe。一个非常粗糙的实现如下所示:

object Maybe(object value, Func<object,object> function)
{
    if(value==null)
        return null;

    return function(value);
}

这在C#中是非常无用的,因为这种语言缺乏使monad有用所需的语法糖。但是monad允许您用函数式编程语言编写更简洁的代码。

通常程序员在链中调用monad,如下所示:

var x = Maybe(x, x2 => Maybe(y, y2 => Add(x2, y2)));

在本例中,只有当x和y都为非null时,才会调用Add方法,否则将返回null。

答复

回答最初的问题:monad是一个函数和一个类型。就像一个特殊接口的实现。

如果你要求对如此抽象的东西做出简洁、实用的解释,那么你只能希望得到一个抽象的答案:

a -> b

是表示从as到bs的计算的一种方式。您可以将计算链接起来,也可以将它们组合在一起:

(b -> c) -> (a -> b) -> (a -> c)

更复杂的计算需要更复杂的类型,例如:

a -> f b

是从as到bs到fs的计算类型。您还可以编写它们:

(b -> f c) -> (a -> f b) -> (a -> f c)

事实证明,这种模式无处不在,并且与上面的第一个组合具有相同的财产(结合性、右-和左-同一性)。

人们必须给这个模式起一个名字,但如果知道第一个组合被正式描述为半群体,这会有帮助吗?

“单子和圆括号一样有趣和重要”(奥列格·基斯廖夫)

除了上面出色的答案之外,让我为您提供以下文章的链接(由Patrick Thomson撰写),该文章通过将概念与JavaScript库jQuery(及其使用“方法链接”来操作DOM的方式)相关联来解释monads:jQuery是Monad

jQuery文档本身并没有提到术语“monad”,而是谈到了可能更熟悉的“构建器模式”。这并不能改变一个事实,那就是你有一个合适的monad,也许你甚至没有意识到它。