在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

tl;博士

{-# LANGUAGE InstanceSigs #-}

newtype Id t = Id t

instance Monad Id where
   return :: t -> Id t
   return = Id

   (=<<) :: (a -> Id b) -> Id a -> Id b
   f =<< (Id x) = f x

开场白

应用程序运算符$of函数

forall a b. a -> b

是规范定义的

($) :: (a -> b) -> a -> b
f $ x = f x

infixr 0 $

根据Haskell基函数应用f x(infixl 10)。

作文定义为$as

(.) :: (b -> c) -> (a -> b) -> (a -> c)
f . g = \ x -> f $ g x

infixr 9 .

并且满足所有f g h的等价性。

     f . id  =  f            :: c -> d   Right identity
     id . g  =  g            :: b -> c   Left identity
(f . g) . h  =  f . (g . h)  :: a -> d   Associativity

.是关联的,id是它的右标识和左标识。

克莱斯利三人组

在编程中,monad是带有monad类型类实例的函子类型构造函数。定义和实现有几个等价的变体,每个变体对monad抽象的直觉略有不同。

函子是带有函子类型类实例的*->*类型的类型构造函数f。

{-# LANGUAGE KindSignatures #-}

class Functor (f :: * -> *) where
   map :: (a -> b) -> (f a -> f b)

除了遵循静态强制类型协议之外,函子类型类的实例必须遵守所有f g的代数函子定律。

       map id  =  id           :: f t -> f t   Identity
map f . map g  =  map (f . g)  :: f a -> f c   Composition / short cut fusion

函数计算具有以下类型

forall f t. Functor f => f t

计算c r包含上下文c中的结果r。

一元一元函数或Kleisli箭头的类型为

forall m a b. Functor m => a -> m b

Kleisi箭头是接受一个参数a并返回一元计算m b的函数。

Monads是用Kleisli三重函数定义的

(m, return, (=<<))

实现为类型类

class Functor m => Monad m where
   return :: t -> m t
   (=<<)  :: (a -> m b) -> m a -> m b

infixr 1 =<<

Kleisli标识返回是一个Kleisli箭头,它将值t提升为单元上下文m。

Kleisli组成<=<根据扩展定义为

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)
f <=< g = \ x -> f =<< g x

infixr 1 <=<

<=<组成两个Kleisli箭头,将左箭头应用于右箭头应用的结果。

monad类型类的实例必须遵守monad定律,这在Kleisli组合中最为优雅地表述为:forall f g h。

   f <=< return  =  f                :: c -> m d   Right identity
   return <=< g  =  g                :: b -> m c   Left identity
(f <=< g) <=< h  =  f <=< (g <=< h)  :: a -> m d   Associativity

<=<是关联的,返回是它的右标识和左标识。

身份

标识类型

type Id t = t

是类型上的标识函数

Id :: * -> *

被解释为函子,

   return :: t -> Id t
=      id :: t ->    t

    (=<<) :: (a -> Id b) -> Id a -> Id b
=     ($) :: (a ->    b) ->    a ->    b

    (<=<) :: (b -> Id c) -> (a -> Id b) -> (a -> Id c)
=     (.) :: (b ->    c) -> (a ->    b) -> (a ->    c)

在规范的Haskell中,定义了身份monad

newtype Id t = Id t

instance Functor Id where
   map :: (a -> b) -> Id a -> Id b
   map f (Id x) = Id (f x)

instance Monad Id where
   return :: t -> Id t
   return = Id

   (=<<) :: (a -> Id b) -> Id a -> Id b
   f =<< (Id x) = f x

选项

选项类型

data Maybe t = Nothing | Just t

编码计算可能t不一定产生结果t,计算可能“失败”。选项monad已定义

instance Functor Maybe where
   map :: (a -> b) -> (Maybe a -> Maybe b)
   map f (Just x) = Just (f x)
   map _ Nothing  = Nothing

instance Monad Maybe where
   return :: t -> Maybe t
   return = Just

   (=<<) :: (a -> Maybe b) -> Maybe a -> Maybe b
   f =<< (Just x) = f x
   _ =<< Nothing  = Nothing

a->Maybe b仅在Maybe a产生结果时应用于结果。

newtype Nat = Nat Int

自然数可以编码为大于或等于零的整数。

toNat :: Int -> Maybe Nat
toNat i | i >= 0    = Just (Nat i)
        | otherwise = Nothing

自然数在减法下不是封闭的。

(-?) :: Nat -> Nat -> Maybe Nat
(Nat n) -? (Nat m) = toNat (n - m)

infixl 6 -?

选项monad涵盖了异常处理的基本形式。

(-? 20) <=< toNat :: Int -> Maybe Nat

List

列表monad,覆盖列表类型

data [] t = [] | t : [t]

infixr 5 :

及其加法幺半群运算“append”

(++) :: [t] -> [t] -> [t]
(x : xs) ++ ys = x : xs ++ ys
[]       ++ ys = ys

infixr 5 ++

编码非线性计算[t],产生自然量0,1。。。结果t。

instance Functor [] where
   map :: (a -> b) -> ([a] -> [b])
   map f (x : xs) = f x : map f xs
   map _ []       = []

instance Monad [] where
   return :: t -> [t]
   return = (: [])

   (=<<) :: (a -> [b]) -> [a] -> [b]
   f =<< (x : xs) = f x ++ (f =<< xs)
   _ =<< []       = []

Extension=<<将从Kleisli箭头a->[b]的应用f x到[a]的元素的所有列表[b]连接到一个结果列表[b]。

设正整数n的正除数为

divisors :: Integral t => t -> [t]
divisors n = filter (`divides` n) [2 .. n - 1]

divides :: Integral t => t -> t -> Bool
(`divides` n) = (== 0) . (n `rem`)

then

forall n.  let { f = f <=< divisors } in f n   =   []

在定义monad类型类时,Haskell标准使用其flip,即绑定运算符>>=,而不是extension=<<。

class Applicative m => Monad m where
   (>>=) :: forall a b. m a -> (a -> m b) -> m b

   (>>) :: forall a b. m a -> m b -> m b
   m >> k = m >>= \ _ -> k
   {-# INLINE (>>) #-}

   return :: a -> m a
   return = pure

为了简单起见,本解释使用了类型类层次结构

class              Functor f
class Functor m => Monad m

在Haskell中,当前的标准层次结构是

class                  Functor f
class Functor p     => Applicative p
class Applicative m => Monad m

因为不仅每个单子都是函子,而且每个应用格也是函子,每个单子也是应用格。

使用列表monad,命令式伪代码

for a in (1, ..., 10)
   for b in (1, ..., 10)
      p <- a * b
      if even(p)
         yield p

大致翻译为do块,

do a <- [1 .. 10]
   b <- [1 .. 10]
   let p = a * b
   guard (even p)
   return p

等效的monad理解,

[ p | a <- [1 .. 10], b <- [1 .. 10], let p = a * b, even p ]

和表达式

[1 .. 10] >>= (\ a ->
   [1 .. 10] >>= (\ b ->
      let p = a * b in
         guard (even p) >>       -- [ () | even p ] >>
            return p
      )
   )

Do符号和monad理解是嵌套绑定表达式的语法糖。绑定运算符用于一元结果的本地名称绑定。

let x = v in e    =   (\ x -> e)  $  v   =   v  &  (\ x -> e)
do { r <- m; c }  =   (\ r -> c) =<< m   =   m >>= (\ r -> c)

哪里

(&) :: a -> (a -> b) -> b
(&) = flip ($)

infixl 0 &

定义了防护功能

guard :: Additive m => Bool -> m ()
guard True  = return ()
guard False = fail

其中单位类型或“空元组”

data () = ()

支持选择和失败的加法单子可以通过使用类型类抽象

class Monad m => Additive m where
   fail  :: m t
   (<|>) :: m t -> m t -> m t

infixl 3 <|>

instance Additive Maybe where
   fail = Nothing

   Nothing <|> m = m
   m       <|> _ = m

instance Additive [] where
   fail = []
   (<|>) = (++)

其中fail和<|>形成所有k l m的幺半群。

     k <|> fail  =  k
     fail <|> l  =  l
(k <|> l) <|> m  =  k <|> (l <|> m)

失败的是吸收/消灭零元素的加法单体

_ =<< fail  =  fail

如果在

guard (even p) >> return p

即使p为真,则保护产生[()],并且根据>>的定义,产生局部常数函数

\ _ -> return p

应用于结果()。如果为false,则保护生成列表monad的fail([]),这不会产生要应用>>的Kleisli箭头的结果,因此跳过此p。

状态

不光彩的是,monad用于编码有状态计算。

状态处理器是一种功能

forall st t. st -> (t, st)

转换状态st并产生结果t。状态st可以是任何东西。没有,标志,计数,数组,句柄,机器,世界。

状态处理器的类型通常称为

type State st t = st -> (t, st)

状态处理器monad是kind*->*函子state st.Kleisli状态处理器mond的箭头是函数

forall st a b. a -> (State st) b

在规范的Haskell中,定义了状态处理器monad的惰性版本

newtype State st t = State { stateProc :: st -> (t, st) }

instance Functor (State st) where
   map :: (a -> b) -> ((State st) a -> (State st) b)
   map f (State p) = State $ \ s0 -> let (x, s1) = p s0
                                     in  (f x, s1)

instance Monad (State st) where
   return :: t -> (State st) t
   return x = State $ \ s -> (x, s)

   (=<<) :: (a -> (State st) b) -> (State st) a -> (State st) b
   f =<< (State p) = State $ \ s0 -> let (x, s1) = p s0
                                     in  stateProc (f x) s1

状态处理器通过提供初始状态来运行:

run :: State st t -> st -> (t, st)
run = stateProc

eval :: State st t -> st -> t
eval = fst . run

exec :: State st t -> st -> st
exec = snd . run

状态访问由原语get和put提供,它们是对有状态monad的抽象方法:

{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies #-}

class Monad m => Stateful m st | m -> st where
   get :: m st
   put :: st -> m ()

m->st声明状态类型st对monad m的函数依赖性;例如,状态t将确定状态类型为t唯一。

instance Stateful (State st) st where
   get :: State st st
   get = State $ \ s -> (s, s)

   put :: st -> State st ()
   put s = State $ \ _ -> ((), s)

单位类型类似于C中的空隙。

modify :: Stateful m st => (st -> st) -> m ()
modify f = do
   s <- get
   put (f s)

gets :: Stateful m st => (st -> t) -> m t
gets f = do
   s <- get
   return (f s)

gets通常与记录字段访问器一起使用。

状态monad等价于变量线程

let s0 = 34
    s1 = (+ 1) s0
    n = (* 12) s1
    s2 = (+ 7) s1
in  (show n, s2)

其中s0::Int,是同样透明的,但更加优雅和实用

(flip run) 34
   (do
      modify (+ 1)
      n <- gets (* 12)
      modify (+ 7)
      return (show n)
   )

modify(+1)是一种类型为State Int()的计算,但其效果等同于return()。

(flip run) 34
   (modify (+ 1) >>
      gets (* 12) >>= (\ n ->
         modify (+ 7) >>
            return (show n)
      )
   )

结合性的单子定律可以用>>=forall m f g来表示。

(m >>= f) >>= g  =  m >>= (\ x -> f x >>= g)

or

do {                 do {                   do {
   r1 <- do {           x <- m;                r0 <- m;
      r0 <- m;   =      do {            =      r1 <- f r0;
      f r0                 r1 <- f x;          g r1
   };                      g r1             }
   g r1                 }
}                    }

与面向表达式的编程(例如Rust)一样,块的最后一条语句表示其产量。绑定运算符有时被称为“可编程分号”。

对结构化命令式编程中的迭代控制结构原语进行单点仿真

for :: Monad m => (a -> m b) -> [a] -> m ()
for f = foldr ((>>) . f) (return ())

while :: Monad m => m Bool -> m t -> m ()
while c m = do
   b <- c
   if b then m >> while c m
        else return ()

forever :: Monad m => m t
forever m = m >> forever m

输入/输出

data World

I/O世界状态处理器monad是纯Haskell和真实世界的协调,是功能外延和命令式操作语义的协调。与实际严格执行情况类似:

type IO t = World -> (t, World)

不纯洁的原语促进了交互

getChar         :: IO Char
putChar         :: Char -> IO ()
readFile        :: FilePath -> IO String
writeFile       :: FilePath -> String -> IO ()
hSetBuffering   :: Handle -> BufferMode -> IO ()
hTell           :: Handle -> IO Integer
. . .              . . .

使用IO原语的代码的杂质由类型系统永久协议化。因为纯净是可怕的,在IO中发生的一切,都留在IO中。

unsafePerformIO :: IO t -> t

或者,至少应该。

Haskell程序的类型签名

main :: IO ()
main = putStrLn "Hello, World!"

扩展到

World -> ((), World)

改变世界的函数。

后记

对象是Haskell类型,态射是Haskelr类型之间的函数的类别是,“快速和松散”,类别是Hask。

函子T是从范畴C到范畴D的映射;对于C中的每个对象,D中的一个对象

Tobj :  Obj(C) -> Obj(D)
   f :: *      -> *

对于C中的每个态射,D中的一个态射

Tmor :  HomC(X, Y) -> HomD(Tobj(X), Tobj(Y))
 map :: (a -> b)   -> (f a -> f b)

其中X,Y是C中的对象。HomC(X,Y)是C中所有态射X->Y的同态类。

                    Tmor    Tobj

      T(id)  =  id        : T(X) -> T(X)   Identity
T(f) . T(g)  =  T(f . g)  : T(X) -> T(Z)   Composition

范畴C的Kleisli范畴由Kleisli三元组给出

<T, eta, _*>

内函子的

T : C -> C

(f) 、同一态射eta(return)和扩展运算符*(=<<)。

Hask中的每个Kleisli态射

      f :  X -> T(Y)
      f :: a -> m b

由扩展运算符

   (_)* :  Hom(X, T(Y)) -> Hom(T(X), T(Y))
  (=<<) :: (a -> m b)   -> (m a -> m b)

在Hask的Kleisli范畴中给出了一个态射

     f* :  T(X) -> T(Y)
(f =<<) :: m a  -> m b

Kleisli范畴中的成分。T以扩展的形式给出

 f .T g  =  f* . g       :  X -> T(Z)
f <=< g  =  (f =<<) . g  :: a -> m c

并且满足范畴公理

       eta .T g  =  g                :  Y -> T(Z)   Left identity
   return <=< g  =  g                :: b -> m c

       f .T eta  =  f                :  Z -> T(U)   Right identity
   f <=< return  =  f                :: c -> m d

  (f .T g) .T h  =  f .T (g .T h)    :  X -> T(U)   Associativity
(f <=< g) <=< h  =  f <=< (g <=< h)  :: a -> m d

应用等价变换

     eta .T g  =  g
     eta* . g  =  g               By definition of .T
     eta* . g  =  id . g          forall f.  id . f  =  f
         eta*  =  id              forall f g h.  f . h  =  g . h  ==>  f  =  g

(f .T g) .T h  =  f .T (g .T h)
(f* . g)* . h  =  f* . (g* . h)   By definition of .T
(f* . g)* . h  =  f* . g* . h     . is associative
    (f* . g)*  =  f* . g*         forall f g h.  f . h  =  g . h  ==>  f  =  g

在扩展方面是规范给出的

               eta*  =  id                 :  T(X) -> T(X)   Left identity
       (return =<<)  =  id                 :: m t -> m t

           f* . eta  =  f                  :  Z -> T(U)      Right identity
   (f =<<) . return  =  f                  :: c -> m d

          (f* . g)*  =  f* . g*            :  T(X) -> T(Z)   Associativity
(((f =<<) . g) =<<)  =  (f =<<) . (g =<<)  :: m a -> m c

Monads也可以不使用Kleislian扩展来定义,而是在称为join的编程中使用自然转换mu来定义。一个单元是用μ来定义的,它是一个内函子的范畴C上的三元组

     T :  C -> C
     f :: * -> *

和两种自然变形

   eta :  Id -> T
return :: t  -> f t

    mu :  T . T   -> T
  join :: f (f t) -> f t

满足等效条件

       mu . T(mu)  =  mu . mu               :  T . T . T -> T . T   Associativity
  join . map join  =  join . join           :: f (f (f t)) -> f t

      mu . T(eta)  =  mu . eta       =  id  :  T -> T               Identity
join . map return  =  join . return  =  id  :: f t -> f t

然后定义monad类型类

class Functor m => Monad m where
   return :: t -> m t
   join   :: m (m t) -> m t

选项monad的规范mu实现:

instance Monad Maybe where
   return = Just

   join (Just m) = m
   join Nothing  = Nothing

concat函数

concat :: [[a]] -> [a]
concat (x : xs) = x ++ concat xs
concat []       = []

是列表monad的连接。

instance Monad [] where
   return :: t -> [t]
   return = (: [])

   (=<<) :: (a -> [b]) -> ([a] -> [b])
   (f =<<) = concat . map f

联接的实现可以使用等价项从扩展形式转换

     mu  =  id*           :  T . T -> T
   join  =  (id =<<)      :: m (m t) -> m t

从mu到扩展形式的反向转换如下

     f*  =  mu . T(f)     :  T(X) -> T(Y)
(f =<<)  =  join . map f  :: m a -> m b

Philip Wadler:函数编程的MonadsSimon L Peyton Jones,Philip Wadler:强制函数式编程Jonathan M.D.Hill,Keith Clarke:范畴理论、范畴理论单子及其与函数编程的关系简介´Kleisli类别Eugenio Moggi:计算和单子的概念莫纳德不是什么

但为什么如此抽象的理论对编程有用呢?答案很简单:作为计算机科学家,我们重视抽象!当我们设计软件组件的接口时,我们希望它尽可能少地揭示实现。我们希望能够用许多替代方案来替代实现,许多其他“实例”都是相同的“概念”。当我们为许多程序库设计通用接口时,更重要的是我们选择的接口具有多种实现。我们非常重视monad概念的普遍性,这是因为范畴理论非常抽象,所以它的概念对编程非常有用。因此,我们在下面介绍的单子的推广也与范畴理论有着密切的联系,这一点不足为奇。但我们强调,我们的目的非常实用:它不是“实现范畴理论”,而是找到一种更通用的方法来构造组合子库。数学家已经为我们做了很多工作,这是我们的幸运!

从约翰·休斯的《概括单子到箭头》

其他回答

第一:如果你不是数学家,monad这个词有点空洞。另一个术语是计算构建器,它更能描述它们的实际用途。

它们是链接操作的模式。它看起来有点像面向对象语言中的方法链接,但机制略有不同。

该模式主要用于函数式语言(特别是Haskell,它普遍使用monad),但也可以用于支持高阶函数的任何语言(即可以将其他函数作为参数的函数)。

JavaScript中的数组支持该模式,因此让我们将其作为第一个示例。

模式的要点是我们有一个类型(在本例中为Array),它有一个以函数作为参数的方法。提供的操作必须返回相同类型的实例(即返回数组)。

首先是一个不使用monad模式的方法链接示例:

[1,2,3].map(x => x + 1)

结果是[2,3,4]。代码不符合monad模式,因为我们作为参数提供的函数返回的是数字,而不是数组。monad形式的相同逻辑是:

[1,2,3].flatMap(x => [x + 1])

这里我们提供了一个返回Array的操作,所以现在它符合模式。flatMap方法为数组中的每个元素执行提供的函数。它期望每个调用都有一个数组作为结果(而不是单个值),但将得到的数组集合并为一个数组。所以最终的结果是相同的,数组[2,3,4]。

(提供给map或flatMap等方法的函数参数在JavaScript中通常称为“回调”。我将其称为“操作”,因为它更通用。)

如果我们连锁多个操作(以传统方式):

[1,2,3].map(a => a + 1).filter(b => b != 3)

数组中的结果[2,4]

monad形式的相同链接:

[1,2,3].flatMap(a => [a + 1]).flatMap(b => b != 3 ? [b] : [])

产生相同的结果,即数组[2,4]。

您将立即注意到monad格式比非monad格式更难看!这正好表明单子不一定“好”。它们是一种有时有益有时不有益的模式。

请注意,monad模式可以以不同的方式组合:

[1,2,3].flatMap(a => [a + 1].flatMap(b => b != 3 ? [b] : []))

这里的绑定是嵌套的,而不是链式的,但结果是一样的。这是单子的一个重要属性,我们稍后会看到。这意味着组合的两个操作可以被视为单个操作。

该操作允许返回具有不同元素类型的数组,例如,将数字数组转换为字符串数组或其他东西;只要它仍然是一个数组。

这可以使用Typescript表示法更正式地描述。数组的类型为array<T>,其中T是数组中元素的类型。flatMap()方法接受类型为T=>Array<U>的函数参数,并返回一个Array<U>。

一般来说,monad是任何类型的Foo<Bar>,它有一个“bind”方法,该方法接受类型为Bar=>Foo<Baz>的函数参数,并返回一个Foo<Baz>。

这回答了单子是什么。这个答案的其余部分将试图通过示例来解释为什么monads在Haskell这样的语言中是一种有用的模式,而Haskell对monads有很好的支持。

Haskell和Do表示法

要将map/filter示例直接转换为Haskell,我们将flatMap替换为>>=运算符:

[1,2,3] >>= \a -> [a+1] >>= \b -> if b == 3 then [] else [b] 

>>=运算符是Haskell中的绑定函数。当操作数是一个列表时,它与JavaScript中的flatMap相同,但对于其他类型,它被重载了不同的含义。

但是Haskell还为monad表达式提供了专用语法do块,它完全隐藏了绑定运算符:

 do a <- [1,2,3] 
    b <- [a+1] 
    if b == 3 then [] else [b] 

这将隐藏“管道”,并让您专注于在每个步骤中应用的实际操作。

在do块中,每一行都是一个操作。约束仍然认为块中的所有操作都必须返回相同的类型。因为第一个表达式是一个列表,所以其他操作也必须返回一个列表。

向后箭头<-看起来像赋值,但请注意,这是绑定中传递的参数。因此,当右侧的表达式是整数列表时,左侧的变量将是一个整数,但将对列表中的每个整数执行。

示例:安全导航(Maybe类型)

关于列表,让我们来看看monad模式如何对其他类型有用。

某些函数可能不总是返回有效值。在Haskell中,这由Maybe类型表示,该类型是Just value或Nothing选项。

总是返回有效值的链接操作当然很简单:

streetName = getStreetName (getAddress (getUser 17)) 

但如果任何函数都可以返回Nothing呢?我们需要单独检查每个结果,如果不是Nothing,则只将值传递给下一个函数:

case getUser 17 of
      Nothing -> Nothing 
      Just user ->
         case getAddress user of
            Nothing -> Nothing 
            Just address ->
              getStreetName address

很多重复检查!想象一下如果链条更长。Haskell用Maybe的monad模式解决了这个问题:

do
  user <- getUser 17
  addr <- getAddress user
  getStreetName addr

这个do块调用Maybe类型的绑定函数(因为第一个表达式的结果是Maybe)。绑定函数仅在值为Just值时执行以下操作,否则只传递Nothing。

这里使用monad模式来避免重复代码。这与其他一些语言使用宏来简化语法的方式类似,尽管宏以非常不同的方式实现了相同的目标。

请注意,Haskell中monad模式和monad友好语法的结合导致了代码更干净。在JavaScript这样的语言中,如果没有对monad的任何特殊语法支持,我怀疑monad模式是否能够在这种情况下简化代码。

可变状态

Haskell不支持可变状态。所有变量都是常量,所有值都是不可变的。但State类型可用于模拟具有可变状态的编程:

add2 :: State Integer Integer
add2 = do
        -- add 1 to state
         x <- get
         put (x + 1)
         -- increment in another way
         modify (+1)
         -- return state
         get


evalState add2 7
=> 9

add2函数构建一个monad链,然后以7作为初始状态对其求值。

显然,这在Haskell中才有意义。其他语言支持开箱即用的可变状态。Haskell通常在语言特性上是“选择加入”的——您可以在需要时启用可变状态,并且类型系统确保效果是显式的。IO是这方面的另一个例子。

IO

IO类型用于链接和执行“不纯”函数。

与任何其他实用语言一样,Haskell有一系列与外界接口的内置函数:putStrLine、readLine等。这些函数被称为“不纯”,因为它们要么会产生副作用,要么会产生不确定性的结果。即使是像获取时间这样简单的事情也被认为是不纯洁的,因为结果是不确定的——用相同的参数调用两次可能会返回不同的值。

纯函数是确定性的——它的结果完全取决于传递的参数,除了返回值之外,它对环境没有任何副作用。

Haskell大力鼓励使用纯函数——这是该语言的一个主要卖点。不幸的是,对于纯粹主义者来说,你需要一些不纯的函数来做任何有用的事情。Haskell折衷方案是将纯函数和不纯函数彻底分开,并保证纯函数无法直接或间接执行不纯函数。

这是通过给所有不纯函数赋予IO类型来保证的。Haskell程序的入口点是具有IO类型的主函数,因此我们可以在顶层执行不纯的函数。

但是该语言如何防止纯函数执行不纯函数?这是因为Haskell的懒惰本性。只有当某个函数的输出被其他函数消耗时,才执行该函数。但除了将IO值分配给main之外,没有办法使用它。因此,如果一个函数想要执行一个不纯的函数,它必须连接到main并具有IO类型。

对IO操作使用monad链接还可以确保它们以线性和可预测的顺序执行,就像命令式语言中的语句一样。

这让我们看到大多数人会用Haskell编写的第一个程序:

main :: IO ()
main = do 
        putStrLn ”Hello World”

当只有一个操作,因此没有什么要绑定时,do关键字是多余的,但为了保持一致性,我还是保留了它。

()类型表示“无效”。这种特殊的返回类型仅适用于因其副作用而调用的IO函数。

更长的示例:

main = do
    putStrLn "What is your name?"
    name <- getLine
    putStrLn "hello" ++ name

这构建了一个IO操作链,因为它们被分配给主功能,所以它们被执行。

将IO与Maybe进行比较表明了monad模式的多功能性。对于Maybe,该模式用于通过将条件逻辑移动到绑定函数来避免重复代码。对于IO,该模式用于确保IO类型的所有操作都是有序的,并且IO操作不会“泄漏”到纯函数。

总结

在我的主观看法中,monad模式只有在对该模式有一些内置支持的语言中才真正有价值。否则,它只会导致过于复杂的代码。但是Haskell(和其他一些语言)有一些内置支持,隐藏了繁琐的部分,然后该模式可以用于各种有用的事情。喜欢:

避免重复代码(可能)为程序的分隔区域添加可变状态或异常等语言特性。将讨厌的东西与美好的东西隔离开来(IO)嵌入式域特定语言(解析器)将GOTO添加到语言中。

实际上,monad基本上允许回调嵌套(具有相互递归的线程状态(请忽略连字符))(以可组合(或可分解)的方式)(具有类型安全性(有时(取决于语言))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

例如,这不是单子:

//JavaScript is 'Practical'
var getAllThree = 
         bind(getFirst, function(first){  
  return bind(getSecond,function(second){  
  return bind(getThird, function(third){  
    var fancyResult = // And now make do fancy 
                      // with first, second,
                      // and third 
    return RETURN(fancyResult);
  });});});  

但是monad启用了这样的代码。monad实际上是一组类型:{bind,RETURN,也许其他我不认识的人…}。这本质上是无关紧要的,实际上是不切实际的。

所以现在我可以使用它:

var fancyResultReferenceOutsideOfMonad =  
  getAllThree(someKindOfInputAcceptableToOurGetFunctionsButProbablyAString);  

//Ignore this please, throwing away types, yay JavaScript:
//  RETURN = K
//  bind = \getterFn,cb -> 
//    \in -> let(result,newState) = getterFn(in) in cb(result)(newState)

或将其分解:

var getFirstTwo = 
           bind(getFirst, function(first){  
    return bind(getSecond,function(second){  
      var fancyResult2 = // And now make do fancy 
                         // with first and second
      return RETURN(fancyResult2);
    });})
  , getAllThree = 
           bind(getFirstTwo, function(fancyResult2){  
    return bind(getThird,    function(third){  
      var fancyResult3 = // And now make do fancy 
                         // with fancyResult2,
                         // and third 
      return RETURN(fancyResult3);
    });});

或者忽略某些结果:

var getFirstTwo = 
           bind(getFirst, function(first){  
    return bind(getSecond,function(second){  
      var fancyResult2 = // And now make do fancy 
                         // with first and second
      return RETURN(fancyResult2);
    });})
  , getAllThree = 
           bind(getFirstTwo, function(____dontCare____NotGonnaUse____){  
    return bind(getThird,    function(three){  
      var fancyResult3 = // And now make do fancy 
                         // with `three` only!
      return RETURN(fancyResult3);
    });});

或者从以下内容简化一个小案例:

var getFirstTwo = 
           bind(getFirst, function(first){  
    return bind(getSecond,function(second){  
      var fancyResult2 = // And now make do fancy 
                         // with first and second
      return RETURN(fancyResult2);
    });})
  , getAllThree = 
           bind(getFirstTwo, function(_){  
    return bind(getThird,    function(three){  
      return RETURN(three);
    });});

收件人(使用“正确身份”):

var getFirstTwo = 
           bind(getFirst, function(first){  
    return bind(getSecond,function(second){  
      var fancyResult2 = // And now make do fancy 
                         // with first and second
      return RETURN(fancyResult2);
    });})
  , getAllThree = 
           bind(getFirstTwo, function(_){  
    return getThird;
    });

或者把它们挤在一起:

var getAllThree = 
           bind(getFirst, function(first_dontCareNow){  
    return bind(getSecond,function(second_dontCareNow){  
    return getThird;
    });});

这些能力的实用性并没有真正显现出来,或者变得清晰,直到你试图解决真正的棘手问题例如解析或模块/ajax/资源加载。

你能想象成千上万行indexOf/subString逻辑吗?如果频繁的解析步骤包含在小函数中呢?像字符、空格、大写字符或数字这样的函数?如果这些函数在回调中给出了结果,而不必与Regex集团和争论发生冲突?如果它们的组成/分解被很好地理解了呢?这样你就可以从下往上构建大型解析器了吗?

因此,管理嵌套回调范围的能力非常实用,尤其是在使用monadic解析器组合器库时。(也就是说,根据我的经验)

不要挂断电话:-分类理论-可能是月-莫纳德定律-哈斯克尔- !!!!

公主对F#计算表达式的解释帮助了我,尽管我仍然不能说我真的理解了。

编辑:这个系列-用javascript解释monad-对我来说是一个“打破平衡”的系列。

http://blog.jcoglan.com/2011/03/05/translation-from-haskell-to-javascript-of-selected-portions-of-the-best-introduction-to-monads-ive-ever-read/http://blog.jcoglan.com/2011/03/06/monad-syntax-for-javascript/http://blog.jcoglan.com/2011/03/11/promises-are-the-monad-of-asynchronous-programming/

我认为理解单子是一件让你毛骨悚然的事。从这个意义上说,尽可能多地阅读“教程”是一个好主意,但通常奇怪的东西(不熟悉的语言或语法)会让你的大脑无法专注于基本内容。

有些事情我很难理解:

基于规则的解释对我来说从未奏效,因为大多数实际示例实际上需要的不仅仅是返回/绑定。此外,称之为规则也无济于事。这更像是“有些东西有共同点,我们把它们称为‘单子’,把共同点称为‘规则’”。Return(a->M<a>)和Bind(M<a>->(a->M<b>)->M<b>)很好,但我永远无法理解Bind如何从M<a>中提取a,以便将其传递给a->M<b>。我不认为我在任何地方读过(也许这对其他人来说都很明显),Return(M<a>->a)的反面必须存在于monad内部,它只是不需要暴露。

http://mikehadlow.blogspot.com/2011/02/monads-in-c-8-video-of-my-ddd9-monad.html

这是你要找的视频。

用C#演示组合和对齐类型的问题,然后用C#正确实现它们。最后,他展示了F#和Haskell中相同的C#代码的外观。

monad是用于封装状态变化的对象的东西。在不允许您具有可修改状态的语言(例如,Haskell)中最常遇到这种情况。

例如文件I/O。

您将能够使用文件I/O的monad来将不断变化的状态本质与使用monad的代码隔离开来。Monad内部的代码可以有效地忽略Monad外部世界的变化状态,这使您更容易理解程序的整体效果。