在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

实际上,monad基本上允许回调嵌套(具有相互递归的线程状态(请忽略连字符))(以可组合(或可分解)的方式)(具有类型安全性(有时(取决于语言))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

例如,这不是单子:

//JavaScript is 'Practical'
var getAllThree = 
         bind(getFirst, function(first){  
  return bind(getSecond,function(second){  
  return bind(getThird, function(third){  
    var fancyResult = // And now make do fancy 
                      // with first, second,
                      // and third 
    return RETURN(fancyResult);
  });});});  

但是monad启用了这样的代码。monad实际上是一组类型:{bind,RETURN,也许其他我不认识的人…}。这本质上是无关紧要的,实际上是不切实际的。

所以现在我可以使用它:

var fancyResultReferenceOutsideOfMonad =  
  getAllThree(someKindOfInputAcceptableToOurGetFunctionsButProbablyAString);  

//Ignore this please, throwing away types, yay JavaScript:
//  RETURN = K
//  bind = \getterFn,cb -> 
//    \in -> let(result,newState) = getterFn(in) in cb(result)(newState)

或将其分解:

var getFirstTwo = 
           bind(getFirst, function(first){  
    return bind(getSecond,function(second){  
      var fancyResult2 = // And now make do fancy 
                         // with first and second
      return RETURN(fancyResult2);
    });})
  , getAllThree = 
           bind(getFirstTwo, function(fancyResult2){  
    return bind(getThird,    function(third){  
      var fancyResult3 = // And now make do fancy 
                         // with fancyResult2,
                         // and third 
      return RETURN(fancyResult3);
    });});

或者忽略某些结果:

var getFirstTwo = 
           bind(getFirst, function(first){  
    return bind(getSecond,function(second){  
      var fancyResult2 = // And now make do fancy 
                         // with first and second
      return RETURN(fancyResult2);
    });})
  , getAllThree = 
           bind(getFirstTwo, function(____dontCare____NotGonnaUse____){  
    return bind(getThird,    function(three){  
      var fancyResult3 = // And now make do fancy 
                         // with `three` only!
      return RETURN(fancyResult3);
    });});

或者从以下内容简化一个小案例:

var getFirstTwo = 
           bind(getFirst, function(first){  
    return bind(getSecond,function(second){  
      var fancyResult2 = // And now make do fancy 
                         // with first and second
      return RETURN(fancyResult2);
    });})
  , getAllThree = 
           bind(getFirstTwo, function(_){  
    return bind(getThird,    function(three){  
      return RETURN(three);
    });});

收件人(使用“正确身份”):

var getFirstTwo = 
           bind(getFirst, function(first){  
    return bind(getSecond,function(second){  
      var fancyResult2 = // And now make do fancy 
                         // with first and second
      return RETURN(fancyResult2);
    });})
  , getAllThree = 
           bind(getFirstTwo, function(_){  
    return getThird;
    });

或者把它们挤在一起:

var getAllThree = 
           bind(getFirst, function(first_dontCareNow){  
    return bind(getSecond,function(second_dontCareNow){  
    return getThird;
    });});

这些能力的实用性并没有真正显现出来,或者变得清晰,直到你试图解决真正的棘手问题例如解析或模块/ajax/资源加载。

你能想象成千上万行indexOf/subString逻辑吗?如果频繁的解析步骤包含在小函数中呢?像字符、空格、大写字符或数字这样的函数?如果这些函数在回调中给出了结果,而不必与Regex集团和争论发生冲突?如果它们的组成/分解被很好地理解了呢?这样你就可以从下往上构建大型解析器了吗?

因此,管理嵌套回调范围的能力非常实用,尤其是在使用monadic解析器组合器库时。(也就是说,根据我的经验)

不要挂断电话:-分类理论-可能是月-莫纳德定律-哈斯克尔- !!!!

其他回答

[免责声明:我仍在努力完全了解monads。以下是我目前所了解的情况。如果这是错误的,希望有有知识的人会在地毯上给我打电话。]

Arnar写道:

Monads只是一种包装东西的方法,它提供了对包装好的东西进行操作而不展开的方法。

正是这样。想法是这样的:

你需要一些价值,并用一些附加信息来包装它。就像值是某种类型的(例如整数或字符串)一样,附加信息也是某种类型的。例如,该额外信息可能是“可能”或“IO”。然后,您有一些运算符,允许您在携带附加信息的同时对打包的数据进行操作。这些运算符使用附加信息来决定如何更改包装值上的操作行为。例如,Maybe Int可以是Just Int或Nothing。现在,如果您将Maybe Int添加到Maybe Int,则运算符将检查它们是否都是内部的Just Int,如果是,则将展开Int,将其传递给加法运算符,将生成的Int重新包装为新的Just Int(这是有效的Maybe Int),从而返回Maybe Int。但如果其中一个是内部的Nothing,则该运算符将立即返回Nothing,这也是一个有效的Maybe Int。这样,你可以假装Maybe Ints只是正常的数字,并对它们进行常规运算。如果你得到了一个Nothing,你的方程仍然会产生正确的结果——而不必到处乱检查Nothing。

但这个例子正是Maybe所发生的事情。如果额外的信息是IO,那么将调用为IO定义的特殊运算符,并且在执行添加之前,它可以执行完全不同的操作。(好吧,将两个IO Int加在一起可能是荒谬的——我还不确定。)

基本上,“monad”大致意思是“模式”。但是,您现在有了一种语言构造(语法和所有),可以将新模式声明为程序中的东西,而不是一本充满了非正式解释和专门命名的模式的书。(这里的不精确之处在于所有模式都必须遵循特定的形式,因此monad不像模式那样通用。但我认为这是大多数人都知道和理解的最接近的术语。)

这就是为什么人们觉得单子如此令人困惑:因为它们是一个通用的概念。问是什么使某物成为monad与问是什么让某物成为模式类似。

但是想想在语言中对模式的概念提供语法支持的含义:你不必阅读“四人帮”一书,记住特定模式的构造,只需编写一次代码,以不可知的通用方式实现这个模式,然后就完成了!然后,您可以重用此模式,如Visitor或Strategy或Façade等,只需用它装饰代码中的操作,而无需反复重新实现它!

所以,这就是为什么理解monad的人会发现它们如此有用的原因:这并不是知识势利者以理解为荣的象牙塔概念(好吧,当然也是如此,teehee),而是实际上让代码更简单。

这个答案从一个激励性的例子开始,通过这个例子,得出一个单子的例子,并正式定义了“单子”。

考虑伪代码中的这三个函数:

f(<x, messages>) := <x, messages "called f. ">
g(<x, messages>) := <x, messages "called g. ">
wrap(x)          := <x, "">

f采用<x,messages>形式的有序对,并返回一个有序对。它保持第一项不变,并在第二项后面附加“called f.”。与g相同。

您可以组合这些函数并获得原始值,以及显示函数调用顺序的字符串:

  f(g(wrap(x)))
= f(g(<x, "">))
= f(<x, "called g. ">)
= <x, "called g. called f. ">

您不喜欢f和g负责将自己的日志消息附加到先前的日志信息。(为了论证起见,想象一下,f和g必须对这对中的第二项执行复杂的逻辑,而不是附加字符串。在两个或多个不同的函数中重复这种复杂的逻辑会很痛苦。)

您更喜欢编写更简单的函数:

f(x)    := <x, "called f. ">
g(x)    := <x, "called g. ">
wrap(x) := <x, "">

但看看当你编写它们时会发生什么:

  f(g(wrap(x)))
= f(g(<x, "">))
= f(<<x, "">, "called g. ">)
= <<<x, "">, "called g. ">, "called f. ">

问题是,将一对传递到函数中并不能得到所需的结果。但如果你可以将一对输入到函数中呢:

  feed(f, feed(g, wrap(x)))
= feed(f, feed(g, <x, "">))
= feed(f, <x, "called g. ">)
= <x, "called g. called f. ">

将feed(f,m)读为“feed m into f”。要将一对<x,messages>输入函数f,需要将x传递给f,从f中获取<y,messages〕,并返回<y,message message>。

feed(f, <x, messages>) := let <y, message> = f(x)
                          in  <y, messages message>

请注意,当您对函数执行三项操作时会发生什么:

首先:如果包装一个值,然后将结果对送入函数:

  feed(f, wrap(x))
= feed(f, <x, "">)
= let <y, message> = f(x)
  in  <y, "" message>
= let <y, message> = <x, "called f. ">
  in  <y, "" message>
= <x, "" "called f. ">
= <x, "called f. ">
= f(x)

这与将值传递给函数相同。

第二:如果你把一对放进包装里:

  feed(wrap, <x, messages>)
= let <y, message> = wrap(x)
  in  <y, messages message>
= let <y, message> = <x, "">
  in  <y, messages message>
= <x, messages "">
= <x, messages>

这不会改变这对。

第三:如果定义了一个函数,该函数将x和g(x)输入f:

h(x) := feed(f, g(x))

并向其中输入一对:

  feed(h, <x, messages>)
= let <y, message> = h(x)
  in  <y, messages message>
= let <y, message> = feed(f, g(x))
  in  <y, messages message>
= let <y, message> = feed(f, <x, "called g. ">)
  in  <y, messages message>
= let <y, message> = let <z, msg> = f(x)
                     in  <z, "called g. " msg>
  in <y, messages message>
= let <y, message> = let <z, msg> = <x, "called f. ">
                     in  <z, "called g. " msg>
  in <y, messages message>
= let <y, message> = <x, "called g. " "called f. ">
  in <y, messages message>
= <x, messages "called g. " "called f. ">
= feed(f, <x, messages "called g. ">)
= feed(f, feed(g, <x, messages>))

这与将对输入g和将所得对输入f相同。

你有大部分的单子。现在您只需要了解程序中的数据类型。

<x,“称为f”>是什么类型的值?这取决于x是什么类型的值。如果x是t类型的,那么你的对就是“t和字符串对”类型的值了。称之为M型。

M是一个类型构造器:M本身并不表示一个类型,但一旦你用一个类型填空,M _就表示一个。M int是一对int和一个字符串。M字符串是一对字符串和一个字符串。等

恭喜你,你已经创建了monad!

形式上,你的monad是元组<M,feed,wrap>。

monad是一个元组<M,feed,wrap>,其中:

M是类型构造函数。feed接受一个(函数接受一个t并返回一个M u)和一个M t并返回M u。wrap接受一个v并返回一个M v。

t、 u和v是可以相同也可以不同的任意三种类型。单子满足您为特定单子证明的三个财产:

将包裹的t送入函数与将未包裹的t传入函数相同。形式上:饲料(f,包装(x))=f(x)将M t喂入包装物对M t没有任何影响。形式上:进给(包裹,m)=m将一个M t(称为M)输入一个函数将t传递到g从g得到一个M u(称为n)将n输入f与m进g从g得到n将n输入f形式上:饲料(h,m)=饲料(f,饲料(g,m)),其中h(x):=饲料(f,g(x))

通常,feed称为bind(在Haskell中为AKA>>=),wrap称为return。

让下面的“{|a|m}”表示一些一元数据。宣传以下内容的数据类型:

        (I got an a!)
          /        
    {| a |m}

函数f知道如何创建monad,只要它有一个a:

       (Hi f! What should I be?)
                      /
(You?. Oh, you'll be /
 that data there.)  /
 /                 /  (I got a b.)
|    --------------      |
|  /                     |
f a                      |
  |--later->       {| b |m}

在这里,我们看到函数f试图评估monad,但遭到了谴责。

(Hmm, how do I get that a?)
 o       (Get lost buddy.
o         Wrong type.)
o       /
f {| a |m}

函数f通过使用>>=找到提取a的方法。

        (Muaahaha. How you 
         like me now!?)       
    (Better.)      \
        |     (Give me that a.)
(Fine, well ok.)    |
         \          |
   {| a |m}   >>=   f

殊不知,monad和>>=勾结在一起。

            (Yah got an a for me?)       
(Yeah, but hey    | 
 listen. I got    |
 something to     |
 tell you first   |
 ...)   \        /
         |      /
   {| a |m}   >>=   f

但他们实际上在谈论什么?嗯,这取决于单子。仅仅抽象地谈论用处有限;你必须对特定的单子有一些经验,才能充实理解。

例如,数据类型Maybe

 data Maybe a = Nothing | Just a

有一个monad实例,其行为如下。。。

其中,如果情况只是

            (Yah what is it?)       
(... hm? Oh,      |
forget about it.  |
Hey a, yr up.)    | 
            \     |
(Evaluation  \    |
time already? \   |
Hows my hair?) |  |
      |       /   |
      |  (It's    |
      |  fine.)  /
      |   /     /    
   {| a |m}   >>=   f

但对于Nothing的情况

        (Yah what is it?)       
(... There      |
is no a. )      |
  |        (No a?)
(No a.)         |
  |        (Ok, I'll deal
  |         with this.)
   \            |
    \      (Hey f, get lost.) 
     \          |   ( Where's my a? 
      \         |     I evaluate a)
       \    (Not any more  |
        \    you don't.    |
         |   We're returning
         |   Nothing.)   /
         |      |       /
         |      |      /
         |      |     /
   {| a |m}   >>=   f      (I got a b.)
                    |  (This is   \
                    |   such a     \
                    |   sham.) o o  \
                    |               o|
                    |--later-> {| b |m}

因此,如果Maye monad实际上包含它所宣传的a,则它允许计算继续,但如果不包含,则中止计算。然而,结果仍然是一段单元数据,尽管不是f的输出。因此,Maye monad用于表示失败的上下文。

不同的单子叶植物表现不同。列表是具有一元实例的其他类型的数据。它们的行为如下:

(Ok, here's your a. Well, its
 a bunch of them, actually.)
  |
  |    (Thanks, no problem. Ok
  |     f, here you go, an a.)
  |       |
  |       |        (Thank's. See
  |       |         you later.)
  |  (Whoa. Hold up f,      |
  |   I got another         |
  |   a for you.)           |
  |       |      (What? No, sorry.
  |       |       Can't do it. I 
  |       |       have my hands full
  |       |       with all these "b" 
  |       |       I just made.) 
  |  (I'll hold those,      |
  |   you take this, and   /
  |   come back for more  /
  |   when you're done   / 
  |   and we'll do it   / 
  |   again.)          /
   \      |  ( Uhhh. All right.)
    \     |       /    
     \    \      /
{| a |m}   >>=  f  

在这种情况下,该函数知道如何从其输入生成列表,但不知道如何处理额外的输入和额外的列表。bind>>=,通过组合多个输出帮助f。我通过这个例子来说明,当>>=负责提取a时,它也可以访问f的最终绑定输出。事实上,除非它知道最终输出具有相同类型的上下文,否则它永远不会提取任何a。

还有其他monad用于表示不同的上下文。下面是一些其他特征。IO monad实际上没有a,但它认识一个人,会为你拿到a。州立大学圣莫尼德分校有一个秘密的圣莫尼德,它会把圣莫尼德藏在桌子下面给f,尽管f只是来要求一个a。

所有这一切的关键是,任何类型的数据如果声明自己是Monad,都会声明某种上下文来从Monad中提取值。从这一切中获得的巨大收益?好吧,用某种上下文来进行计算是很容易的。然而,当将多个上下文负载的计算串联在一起时,可能会变得混乱。monad操作负责解决上下文的交互,因此程序员不必这样做。

注意,>>=的使用通过从f中移除一些自主权来缓解混乱。也就是说,例如,在上面的Nothing情况下,f不再能够决定在Nothing的情况下要做什么;它被编码为>>=。这就是权衡。如果f有必要决定在Nothing的情况下做什么,那么f应该是从Maybe a到Maybe b的函数。在这种情况下,也许是monad是无关紧要的。

然而,请注意,有时数据类型不会导出它的构造函数(看看你的IO),如果我们想使用广告值,我们别无选择,只能使用它的monadic接口。

Monoid似乎可以确保在Monoid和受支持的类型上定义的所有操作始终返回Monoid内部的受支持类型。任何数字+任何数字=一个数字,没有错误。

而除法接受两个分数,并返回一个分数,该分数在haskell somewhy中将除以零定义为无穷大(恰好是分数somewhy)。。。

在任何情况下,Monads似乎只是一种确保您的操作链以可预测的方式运行的方法,而一个声称为Num->Num的函数,由另一个用x调用的Num->Num的函数组成,并不意味着发射导弹。

另一方面,如果我们有一个功能可以发射导弹,我们可以将它与其他功能组合起来,也可以发射导弹。

在Haskell中,main的类型是IO()或IO[()],这种区分很奇怪,我不会讨论它,但我认为会发生以下情况:

如果我有main,我希望它做一系列动作,我运行程序的原因是产生一个效果——通常是通过IO。因此,我可以将IO操作串联在一起,以便——做IO,而不是其他。

如果我尝试做一些不“返回IO”的事情,程序会抱怨链不流动,或者基本上“这与我们正在尝试做的事情有什么关系——IO动作”,这似乎迫使程序员保持思路,不偏离并思考发射导弹,同时创建排序算法——不流动。

基本上,Monads似乎是编译器的一个提示,“嘿,你知道这个函数在这里返回一个数字,它实际上并不总是有效的,它有时会产生一个number,有时什么都没有,请记住这一点”。知道了这一点,如果你试图断言一个单元动作,单元动作可能会作为一个编译时异常,说“嘿,这实际上不是一个数字,这可能是一个数字。但你不能假设这一点。做一些事情以确保流是可接受的。”这在一定程度上防止了不可预测的程序行为。

似乎monad不是关于纯粹性,也不是关于控制,而是关于维护一个类别的身份,在这个类别上,所有行为都是可预测和定义的,或者不编译。当你被要求做某事时,你不能什么都不做,如果你被要求什么都不干(可见),你也不能做。

我能想到的Monads的最大原因是——看看程序/OOP代码,你会发现你不知道程序从哪里开始,也不知道程序的结束,你看到的只是大量的跳跃和大量的数学、魔法和导弹。您将无法维护它,如果可以的话,您将花费大量的时间来思考整个程序,然后才能理解其中的任何部分,因为在这种情况下,模块化是基于代码的相互依赖的“部分”,其中代码被优化为尽可能相关,以保证效率/相互关系。单子是非常具体的,并且通过定义得到了很好的定义,并确保程序流程可以进行分析,并隔离难以分析的部分——因为它们本身就是单子。monad似乎是一个“可理解的单元,它在完全理解时是可预测的”——如果你理解“可能”monad,那么它除了“可能”之外就没有可能做任何事情,这看起来微不足道,但在大多数非monad代码中,一个简单的函数“helloworld”可以发射导弹,什么都不做,或者摧毁宇宙,甚至扭曲时间——我们不知道也不能保证它是什么样子。一个单子保证它就是什么样子。这是非常强大的。

“现实世界”中的所有事物似乎都是单子,因为它受到防止混淆的明确可观察规律的约束。这并不意味着我们必须模仿这个对象的所有操作来创建类,相反,我们可以简单地说“一个正方形就是一个正方形”,只不过是一个正方形,甚至不是矩形或圆形,和“一个正方形的面积是它现有维度的长度乘以它自身的面积。无论你有什么正方形,如果它是2D空间中的正方形,它的面积绝对不能是任何东西,只有它的长度平方,这几乎是微不足道的。这是非常强大的,因为我们不需要断言我们的世界是这样的,我们只需要使用现实的含义来预测它。”防止我们的节目偏离轨道。

我几乎可以肯定是错的,但我认为这可以帮助一些人,所以希望它能帮助一些人。

我将尝试在Haskell的背景下解释Monad。

在函数式编程中,函数组合很重要。它允许我们的程序由小的、易于阅读的函数组成。

假设我们有两个函数:g::Int->String和f::String->Bool。

我们可以做(f.g)x,这与f(gx)相同,其中x是Int值。

当进行合成/将一个函数的结果应用到另一个函数时,使类型匹配是很重要的。在上述情况下,g返回的结果类型必须与f接受的类型相同。

但有时值是在上下文中的,这使得排列类型有点不容易。(在上下文中设置值非常有用。例如,Maybe Int类型表示可能不存在的Int值,IO String类型表示由于执行某些副作用而存在的String值。)

假设我们现在有g1::Int->Maybe String和f1::String->Maybe Bool。g1和f1分别与g和f非常相似。

我们不能做(f1.g1)x或f1(g1 x),其中x是Int值。g1返回的结果类型不是f1期望的类型。

我们可以用。运算符,但现在我们不能用..组合f1和g1。。问题是我们不能直接将上下文中的值传递给期望值不在上下文中的函数。

如果我们引入一个运算符来组合g1和f1,这样我们就可以写出(f1 operator g1)x,这不是很好吗?g1返回上下文中的值。该值将脱离上下文并应用于f1。是的,我们有这样一个操作员。它是<=<。

我们还有一个>>=运算符,它为我们做了完全相同的事情,尽管语法略有不同。

我们写:g1 x>>=f1。g1 x是Maybe Int值。>>=运算符帮助将Int值从“可能不存在”上下文中取出,并将其应用于f1。f1的结果是Maybe Bool,它将是整个>>=操作的结果。

最后,为什么Monad有用?因为Monad是定义>>=运算符的类型类,与定义==和/=运算符的Eq类型类非常相似。

总之,Monad类型类定义了>>=运算符,该运算符允许我们将上下文中的值(我们称为这些monadic值)传递给不需要上下文中值的函数。将考虑上下文。

如果这里需要记住一点,那就是Monads允许在上下文中包含值的函数组合。