在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

这个答案从一个激励性的例子开始,通过这个例子,得出一个单子的例子,并正式定义了“单子”。

考虑伪代码中的这三个函数:

f(<x, messages>) := <x, messages "called f. ">
g(<x, messages>) := <x, messages "called g. ">
wrap(x)          := <x, "">

f采用<x,messages>形式的有序对,并返回一个有序对。它保持第一项不变,并在第二项后面附加“called f.”。与g相同。

您可以组合这些函数并获得原始值,以及显示函数调用顺序的字符串:

  f(g(wrap(x)))
= f(g(<x, "">))
= f(<x, "called g. ">)
= <x, "called g. called f. ">

您不喜欢f和g负责将自己的日志消息附加到先前的日志信息。(为了论证起见,想象一下,f和g必须对这对中的第二项执行复杂的逻辑,而不是附加字符串。在两个或多个不同的函数中重复这种复杂的逻辑会很痛苦。)

您更喜欢编写更简单的函数:

f(x)    := <x, "called f. ">
g(x)    := <x, "called g. ">
wrap(x) := <x, "">

但看看当你编写它们时会发生什么:

  f(g(wrap(x)))
= f(g(<x, "">))
= f(<<x, "">, "called g. ">)
= <<<x, "">, "called g. ">, "called f. ">

问题是,将一对传递到函数中并不能得到所需的结果。但如果你可以将一对输入到函数中呢:

  feed(f, feed(g, wrap(x)))
= feed(f, feed(g, <x, "">))
= feed(f, <x, "called g. ">)
= <x, "called g. called f. ">

将feed(f,m)读为“feed m into f”。要将一对<x,messages>输入函数f,需要将x传递给f,从f中获取<y,messages〕,并返回<y,message message>。

feed(f, <x, messages>) := let <y, message> = f(x)
                          in  <y, messages message>

请注意,当您对函数执行三项操作时会发生什么:

首先:如果包装一个值,然后将结果对送入函数:

  feed(f, wrap(x))
= feed(f, <x, "">)
= let <y, message> = f(x)
  in  <y, "" message>
= let <y, message> = <x, "called f. ">
  in  <y, "" message>
= <x, "" "called f. ">
= <x, "called f. ">
= f(x)

这与将值传递给函数相同。

第二:如果你把一对放进包装里:

  feed(wrap, <x, messages>)
= let <y, message> = wrap(x)
  in  <y, messages message>
= let <y, message> = <x, "">
  in  <y, messages message>
= <x, messages "">
= <x, messages>

这不会改变这对。

第三:如果定义了一个函数,该函数将x和g(x)输入f:

h(x) := feed(f, g(x))

并向其中输入一对:

  feed(h, <x, messages>)
= let <y, message> = h(x)
  in  <y, messages message>
= let <y, message> = feed(f, g(x))
  in  <y, messages message>
= let <y, message> = feed(f, <x, "called g. ">)
  in  <y, messages message>
= let <y, message> = let <z, msg> = f(x)
                     in  <z, "called g. " msg>
  in <y, messages message>
= let <y, message> = let <z, msg> = <x, "called f. ">
                     in  <z, "called g. " msg>
  in <y, messages message>
= let <y, message> = <x, "called g. " "called f. ">
  in <y, messages message>
= <x, messages "called g. " "called f. ">
= feed(f, <x, messages "called g. ">)
= feed(f, feed(g, <x, messages>))

这与将对输入g和将所得对输入f相同。

你有大部分的单子。现在您只需要了解程序中的数据类型。

<x,“称为f”>是什么类型的值?这取决于x是什么类型的值。如果x是t类型的,那么你的对就是“t和字符串对”类型的值了。称之为M型。

M是一个类型构造器:M本身并不表示一个类型,但一旦你用一个类型填空,M _就表示一个。M int是一对int和一个字符串。M字符串是一对字符串和一个字符串。等

恭喜你,你已经创建了monad!

形式上,你的monad是元组<M,feed,wrap>。

monad是一个元组<M,feed,wrap>,其中:

M是类型构造函数。feed接受一个(函数接受一个t并返回一个M u)和一个M t并返回M u。wrap接受一个v并返回一个M v。

t、 u和v是可以相同也可以不同的任意三种类型。单子满足您为特定单子证明的三个财产:

将包裹的t送入函数与将未包裹的t传入函数相同。形式上:饲料(f,包装(x))=f(x)将M t喂入包装物对M t没有任何影响。形式上:进给(包裹,m)=m将一个M t(称为M)输入一个函数将t传递到g从g得到一个M u(称为n)将n输入f与m进g从g得到n将n输入f形式上:饲料(h,m)=饲料(f,饲料(g,m)),其中h(x):=饲料(f,g(x))

通常,feed称为bind(在Haskell中为AKA>>=),wrap称为return。

其他回答

在Scala的上下文中,您会发现以下是最简单的定义。基本上,flatMap(或bind)是“关联”的,并且存在一个标识。

trait M[+A] {
  def flatMap[B](f: A => M[B]): M[B] // AKA bind

  // Pseudo Meta Code
  def isValidMonad: Boolean = {
    // for every parameter the following holds
    def isAssociativeOn[X, Y, Z](x: M[X], f: X => M[Y], g: Y => M[Z]): Boolean =
      x.flatMap(f).flatMap(g) == x.flatMap(f(_).flatMap(g))

    // for every parameter X and x, there exists an id
    // such that the following holds
    def isAnIdentity[X](x: M[X], id: X => M[X]): Boolean =
      x.flatMap(id) == x
  }
}

E.g.

// These could be any functions
val f: Int => Option[String] = number => if (number == 7) Some("hello") else None
val g: String => Option[Double] = string => Some(3.14)

// Observe these are identical. Since Option is a Monad 
// they will always be identical no matter what the functions are
scala> Some(7).flatMap(f).flatMap(g)
res211: Option[Double] = Some(3.14)

scala> Some(7).flatMap(f(_).flatMap(g))
res212: Option[Double] = Some(3.14)


// As Option is a Monad, there exists an identity:
val id: Int => Option[Int] = x => Some(x)

// Observe these are identical
scala> Some(7).flatMap(id)
res213: Option[Int] = Some(7)

scala> Some(7)
res214: Some[Int] = Some(7)

注:严格地说,函数编程中的Monad的定义与范畴理论中的Monard的定义不同,后者是按映射和展平的顺序定义的。尽管它们在某些映射下是等价的。这个演示非常好:http://www.slideshare.net/samthemonad/monad-presentation-scala-as-a-category

公主对F#计算表达式的解释帮助了我,尽管我仍然不能说我真的理解了。

编辑:这个系列-用javascript解释monad-对我来说是一个“打破平衡”的系列。

http://blog.jcoglan.com/2011/03/05/translation-from-haskell-to-javascript-of-selected-portions-of-the-best-introduction-to-monads-ive-ever-read/http://blog.jcoglan.com/2011/03/06/monad-syntax-for-javascript/http://blog.jcoglan.com/2011/03/11/promises-are-the-monad-of-asynchronous-programming/

我认为理解单子是一件让你毛骨悚然的事。从这个意义上说,尽可能多地阅读“教程”是一个好主意,但通常奇怪的东西(不熟悉的语言或语法)会让你的大脑无法专注于基本内容。

有些事情我很难理解:

基于规则的解释对我来说从未奏效,因为大多数实际示例实际上需要的不仅仅是返回/绑定。此外,称之为规则也无济于事。这更像是“有些东西有共同点,我们把它们称为‘单子’,把共同点称为‘规则’”。Return(a->M<a>)和Bind(M<a>->(a->M<b>)->M<b>)很好,但我永远无法理解Bind如何从M<a>中提取a,以便将其传递给a->M<b>。我不认为我在任何地方读过(也许这对其他人来说都很明显),Return(M<a>->a)的反面必须存在于monad内部,它只是不需要暴露。

http://mikehadlow.blogspot.com/2011/02/monads-in-c-8-video-of-my-ddd9-monad.html

这是你要找的视频。

用C#演示组合和对齐类型的问题,然后用C#正确实现它们。最后,他展示了F#和Haskell中相同的C#代码的外观。

如果我理解正确的话,IEnumerable是从monad派生出来的。我想知道,对于我们这些来自C#世界的人来说,这可能是一个有趣的视角吗?

值得一提的是,这里有一些帮助我的教程链接(不,我还不知道单子是什么)。

http://osteele.com/archives/2007/12/overloading-semicolonhttp://spbhug.folding-maps.org/wiki/MonadsEnhttp://www.loria.fr/~kow/monads/

monad是用于封装状态变化的对象的东西。在不允许您具有可修改状态的语言(例如,Haskell)中最常遇到这种情况。

例如文件I/O。

您将能够使用文件I/O的monad来将不断变化的状态本质与使用monad的代码隔离开来。Monad内部的代码可以有效地忽略Monad外部世界的变化状态,这使您更容易理解程序的整体效果。