在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

遵循您简短、简洁、实用的指示:

理解monad最简单的方法是在上下文中应用/组合函数。假设你有两个计算,它们都可以看作是两个数学函数f和g。

f取一个String并生成另一个String(取前两个字母)g获取一个String并生成另一个String(大写转换)

因此,在任何语言中,“取前两个字母并将其转换为大写”的转换都会写成g(f(“某个字符串”))。因此,在纯完美函数的世界中,合成只是:先做一件事,然后再做另一件事。

但假设我们生活在一个功能可能失败的世界中。例如:输入字符串可能有一个字符长,因此f将失败。所以在这种情况下

f获取一个String并生成一个String或Nothing。g仅在f未失败时生成字符串。否则,将不生成任何内容

所以现在,g(f(“somestring”))需要一些额外的检查:“计算f,如果它失败,那么g应该返回Nothing,否则计算g”

此思想可应用于任何参数化类型,如下所示:

让Context[Sometype]是Context中Sometype的计算。考虑功能

f: :AnyType->上下文[Sometype]g: :某些类型->上下文[AnyOtherType]

合成g(f())应该读作“compute f。在这个上下文中,做一些额外的计算,然后计算g,如果它在上下文中有意义”

其他回答

tl;博士

{-# LANGUAGE InstanceSigs #-}

newtype Id t = Id t

instance Monad Id where
   return :: t -> Id t
   return = Id

   (=<<) :: (a -> Id b) -> Id a -> Id b
   f =<< (Id x) = f x

开场白

应用程序运算符$of函数

forall a b. a -> b

是规范定义的

($) :: (a -> b) -> a -> b
f $ x = f x

infixr 0 $

根据Haskell基函数应用f x(infixl 10)。

作文定义为$as

(.) :: (b -> c) -> (a -> b) -> (a -> c)
f . g = \ x -> f $ g x

infixr 9 .

并且满足所有f g h的等价性。

     f . id  =  f            :: c -> d   Right identity
     id . g  =  g            :: b -> c   Left identity
(f . g) . h  =  f . (g . h)  :: a -> d   Associativity

.是关联的,id是它的右标识和左标识。

克莱斯利三人组

在编程中,monad是带有monad类型类实例的函子类型构造函数。定义和实现有几个等价的变体,每个变体对monad抽象的直觉略有不同。

函子是带有函子类型类实例的*->*类型的类型构造函数f。

{-# LANGUAGE KindSignatures #-}

class Functor (f :: * -> *) where
   map :: (a -> b) -> (f a -> f b)

除了遵循静态强制类型协议之外,函子类型类的实例必须遵守所有f g的代数函子定律。

       map id  =  id           :: f t -> f t   Identity
map f . map g  =  map (f . g)  :: f a -> f c   Composition / short cut fusion

函数计算具有以下类型

forall f t. Functor f => f t

计算c r包含上下文c中的结果r。

一元一元函数或Kleisli箭头的类型为

forall m a b. Functor m => a -> m b

Kleisi箭头是接受一个参数a并返回一元计算m b的函数。

Monads是用Kleisli三重函数定义的

(m, return, (=<<))

实现为类型类

class Functor m => Monad m where
   return :: t -> m t
   (=<<)  :: (a -> m b) -> m a -> m b

infixr 1 =<<

Kleisli标识返回是一个Kleisli箭头,它将值t提升为单元上下文m。

Kleisli组成<=<根据扩展定义为

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)
f <=< g = \ x -> f =<< g x

infixr 1 <=<

<=<组成两个Kleisli箭头,将左箭头应用于右箭头应用的结果。

monad类型类的实例必须遵守monad定律,这在Kleisli组合中最为优雅地表述为:forall f g h。

   f <=< return  =  f                :: c -> m d   Right identity
   return <=< g  =  g                :: b -> m c   Left identity
(f <=< g) <=< h  =  f <=< (g <=< h)  :: a -> m d   Associativity

<=<是关联的,返回是它的右标识和左标识。

身份

标识类型

type Id t = t

是类型上的标识函数

Id :: * -> *

被解释为函子,

   return :: t -> Id t
=      id :: t ->    t

    (=<<) :: (a -> Id b) -> Id a -> Id b
=     ($) :: (a ->    b) ->    a ->    b

    (<=<) :: (b -> Id c) -> (a -> Id b) -> (a -> Id c)
=     (.) :: (b ->    c) -> (a ->    b) -> (a ->    c)

在规范的Haskell中,定义了身份monad

newtype Id t = Id t

instance Functor Id where
   map :: (a -> b) -> Id a -> Id b
   map f (Id x) = Id (f x)

instance Monad Id where
   return :: t -> Id t
   return = Id

   (=<<) :: (a -> Id b) -> Id a -> Id b
   f =<< (Id x) = f x

选项

选项类型

data Maybe t = Nothing | Just t

编码计算可能t不一定产生结果t,计算可能“失败”。选项monad已定义

instance Functor Maybe where
   map :: (a -> b) -> (Maybe a -> Maybe b)
   map f (Just x) = Just (f x)
   map _ Nothing  = Nothing

instance Monad Maybe where
   return :: t -> Maybe t
   return = Just

   (=<<) :: (a -> Maybe b) -> Maybe a -> Maybe b
   f =<< (Just x) = f x
   _ =<< Nothing  = Nothing

a->Maybe b仅在Maybe a产生结果时应用于结果。

newtype Nat = Nat Int

自然数可以编码为大于或等于零的整数。

toNat :: Int -> Maybe Nat
toNat i | i >= 0    = Just (Nat i)
        | otherwise = Nothing

自然数在减法下不是封闭的。

(-?) :: Nat -> Nat -> Maybe Nat
(Nat n) -? (Nat m) = toNat (n - m)

infixl 6 -?

选项monad涵盖了异常处理的基本形式。

(-? 20) <=< toNat :: Int -> Maybe Nat

List

列表monad,覆盖列表类型

data [] t = [] | t : [t]

infixr 5 :

及其加法幺半群运算“append”

(++) :: [t] -> [t] -> [t]
(x : xs) ++ ys = x : xs ++ ys
[]       ++ ys = ys

infixr 5 ++

编码非线性计算[t],产生自然量0,1。。。结果t。

instance Functor [] where
   map :: (a -> b) -> ([a] -> [b])
   map f (x : xs) = f x : map f xs
   map _ []       = []

instance Monad [] where
   return :: t -> [t]
   return = (: [])

   (=<<) :: (a -> [b]) -> [a] -> [b]
   f =<< (x : xs) = f x ++ (f =<< xs)
   _ =<< []       = []

Extension=<<将从Kleisli箭头a->[b]的应用f x到[a]的元素的所有列表[b]连接到一个结果列表[b]。

设正整数n的正除数为

divisors :: Integral t => t -> [t]
divisors n = filter (`divides` n) [2 .. n - 1]

divides :: Integral t => t -> t -> Bool
(`divides` n) = (== 0) . (n `rem`)

then

forall n.  let { f = f <=< divisors } in f n   =   []

在定义monad类型类时,Haskell标准使用其flip,即绑定运算符>>=,而不是extension=<<。

class Applicative m => Monad m where
   (>>=) :: forall a b. m a -> (a -> m b) -> m b

   (>>) :: forall a b. m a -> m b -> m b
   m >> k = m >>= \ _ -> k
   {-# INLINE (>>) #-}

   return :: a -> m a
   return = pure

为了简单起见,本解释使用了类型类层次结构

class              Functor f
class Functor m => Monad m

在Haskell中,当前的标准层次结构是

class                  Functor f
class Functor p     => Applicative p
class Applicative m => Monad m

因为不仅每个单子都是函子,而且每个应用格也是函子,每个单子也是应用格。

使用列表monad,命令式伪代码

for a in (1, ..., 10)
   for b in (1, ..., 10)
      p <- a * b
      if even(p)
         yield p

大致翻译为do块,

do a <- [1 .. 10]
   b <- [1 .. 10]
   let p = a * b
   guard (even p)
   return p

等效的monad理解,

[ p | a <- [1 .. 10], b <- [1 .. 10], let p = a * b, even p ]

和表达式

[1 .. 10] >>= (\ a ->
   [1 .. 10] >>= (\ b ->
      let p = a * b in
         guard (even p) >>       -- [ () | even p ] >>
            return p
      )
   )

Do符号和monad理解是嵌套绑定表达式的语法糖。绑定运算符用于一元结果的本地名称绑定。

let x = v in e    =   (\ x -> e)  $  v   =   v  &  (\ x -> e)
do { r <- m; c }  =   (\ r -> c) =<< m   =   m >>= (\ r -> c)

哪里

(&) :: a -> (a -> b) -> b
(&) = flip ($)

infixl 0 &

定义了防护功能

guard :: Additive m => Bool -> m ()
guard True  = return ()
guard False = fail

其中单位类型或“空元组”

data () = ()

支持选择和失败的加法单子可以通过使用类型类抽象

class Monad m => Additive m where
   fail  :: m t
   (<|>) :: m t -> m t -> m t

infixl 3 <|>

instance Additive Maybe where
   fail = Nothing

   Nothing <|> m = m
   m       <|> _ = m

instance Additive [] where
   fail = []
   (<|>) = (++)

其中fail和<|>形成所有k l m的幺半群。

     k <|> fail  =  k
     fail <|> l  =  l
(k <|> l) <|> m  =  k <|> (l <|> m)

失败的是吸收/消灭零元素的加法单体

_ =<< fail  =  fail

如果在

guard (even p) >> return p

即使p为真,则保护产生[()],并且根据>>的定义,产生局部常数函数

\ _ -> return p

应用于结果()。如果为false,则保护生成列表monad的fail([]),这不会产生要应用>>的Kleisli箭头的结果,因此跳过此p。

状态

不光彩的是,monad用于编码有状态计算。

状态处理器是一种功能

forall st t. st -> (t, st)

转换状态st并产生结果t。状态st可以是任何东西。没有,标志,计数,数组,句柄,机器,世界。

状态处理器的类型通常称为

type State st t = st -> (t, st)

状态处理器monad是kind*->*函子state st.Kleisli状态处理器mond的箭头是函数

forall st a b. a -> (State st) b

在规范的Haskell中,定义了状态处理器monad的惰性版本

newtype State st t = State { stateProc :: st -> (t, st) }

instance Functor (State st) where
   map :: (a -> b) -> ((State st) a -> (State st) b)
   map f (State p) = State $ \ s0 -> let (x, s1) = p s0
                                     in  (f x, s1)

instance Monad (State st) where
   return :: t -> (State st) t
   return x = State $ \ s -> (x, s)

   (=<<) :: (a -> (State st) b) -> (State st) a -> (State st) b
   f =<< (State p) = State $ \ s0 -> let (x, s1) = p s0
                                     in  stateProc (f x) s1

状态处理器通过提供初始状态来运行:

run :: State st t -> st -> (t, st)
run = stateProc

eval :: State st t -> st -> t
eval = fst . run

exec :: State st t -> st -> st
exec = snd . run

状态访问由原语get和put提供,它们是对有状态monad的抽象方法:

{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies #-}

class Monad m => Stateful m st | m -> st where
   get :: m st
   put :: st -> m ()

m->st声明状态类型st对monad m的函数依赖性;例如,状态t将确定状态类型为t唯一。

instance Stateful (State st) st where
   get :: State st st
   get = State $ \ s -> (s, s)

   put :: st -> State st ()
   put s = State $ \ _ -> ((), s)

单位类型类似于C中的空隙。

modify :: Stateful m st => (st -> st) -> m ()
modify f = do
   s <- get
   put (f s)

gets :: Stateful m st => (st -> t) -> m t
gets f = do
   s <- get
   return (f s)

gets通常与记录字段访问器一起使用。

状态monad等价于变量线程

let s0 = 34
    s1 = (+ 1) s0
    n = (* 12) s1
    s2 = (+ 7) s1
in  (show n, s2)

其中s0::Int,是同样透明的,但更加优雅和实用

(flip run) 34
   (do
      modify (+ 1)
      n <- gets (* 12)
      modify (+ 7)
      return (show n)
   )

modify(+1)是一种类型为State Int()的计算,但其效果等同于return()。

(flip run) 34
   (modify (+ 1) >>
      gets (* 12) >>= (\ n ->
         modify (+ 7) >>
            return (show n)
      )
   )

结合性的单子定律可以用>>=forall m f g来表示。

(m >>= f) >>= g  =  m >>= (\ x -> f x >>= g)

or

do {                 do {                   do {
   r1 <- do {           x <- m;                r0 <- m;
      r0 <- m;   =      do {            =      r1 <- f r0;
      f r0                 r1 <- f x;          g r1
   };                      g r1             }
   g r1                 }
}                    }

与面向表达式的编程(例如Rust)一样,块的最后一条语句表示其产量。绑定运算符有时被称为“可编程分号”。

对结构化命令式编程中的迭代控制结构原语进行单点仿真

for :: Monad m => (a -> m b) -> [a] -> m ()
for f = foldr ((>>) . f) (return ())

while :: Monad m => m Bool -> m t -> m ()
while c m = do
   b <- c
   if b then m >> while c m
        else return ()

forever :: Monad m => m t
forever m = m >> forever m

输入/输出

data World

I/O世界状态处理器monad是纯Haskell和真实世界的协调,是功能外延和命令式操作语义的协调。与实际严格执行情况类似:

type IO t = World -> (t, World)

不纯洁的原语促进了交互

getChar         :: IO Char
putChar         :: Char -> IO ()
readFile        :: FilePath -> IO String
writeFile       :: FilePath -> String -> IO ()
hSetBuffering   :: Handle -> BufferMode -> IO ()
hTell           :: Handle -> IO Integer
. . .              . . .

使用IO原语的代码的杂质由类型系统永久协议化。因为纯净是可怕的,在IO中发生的一切,都留在IO中。

unsafePerformIO :: IO t -> t

或者,至少应该。

Haskell程序的类型签名

main :: IO ()
main = putStrLn "Hello, World!"

扩展到

World -> ((), World)

改变世界的函数。

后记

对象是Haskell类型,态射是Haskelr类型之间的函数的类别是,“快速和松散”,类别是Hask。

函子T是从范畴C到范畴D的映射;对于C中的每个对象,D中的一个对象

Tobj :  Obj(C) -> Obj(D)
   f :: *      -> *

对于C中的每个态射,D中的一个态射

Tmor :  HomC(X, Y) -> HomD(Tobj(X), Tobj(Y))
 map :: (a -> b)   -> (f a -> f b)

其中X,Y是C中的对象。HomC(X,Y)是C中所有态射X->Y的同态类。

                    Tmor    Tobj

      T(id)  =  id        : T(X) -> T(X)   Identity
T(f) . T(g)  =  T(f . g)  : T(X) -> T(Z)   Composition

范畴C的Kleisli范畴由Kleisli三元组给出

<T, eta, _*>

内函子的

T : C -> C

(f) 、同一态射eta(return)和扩展运算符*(=<<)。

Hask中的每个Kleisli态射

      f :  X -> T(Y)
      f :: a -> m b

由扩展运算符

   (_)* :  Hom(X, T(Y)) -> Hom(T(X), T(Y))
  (=<<) :: (a -> m b)   -> (m a -> m b)

在Hask的Kleisli范畴中给出了一个态射

     f* :  T(X) -> T(Y)
(f =<<) :: m a  -> m b

Kleisli范畴中的成分。T以扩展的形式给出

 f .T g  =  f* . g       :  X -> T(Z)
f <=< g  =  (f =<<) . g  :: a -> m c

并且满足范畴公理

       eta .T g  =  g                :  Y -> T(Z)   Left identity
   return <=< g  =  g                :: b -> m c

       f .T eta  =  f                :  Z -> T(U)   Right identity
   f <=< return  =  f                :: c -> m d

  (f .T g) .T h  =  f .T (g .T h)    :  X -> T(U)   Associativity
(f <=< g) <=< h  =  f <=< (g <=< h)  :: a -> m d

应用等价变换

     eta .T g  =  g
     eta* . g  =  g               By definition of .T
     eta* . g  =  id . g          forall f.  id . f  =  f
         eta*  =  id              forall f g h.  f . h  =  g . h  ==>  f  =  g

(f .T g) .T h  =  f .T (g .T h)
(f* . g)* . h  =  f* . (g* . h)   By definition of .T
(f* . g)* . h  =  f* . g* . h     . is associative
    (f* . g)*  =  f* . g*         forall f g h.  f . h  =  g . h  ==>  f  =  g

在扩展方面是规范给出的

               eta*  =  id                 :  T(X) -> T(X)   Left identity
       (return =<<)  =  id                 :: m t -> m t

           f* . eta  =  f                  :  Z -> T(U)      Right identity
   (f =<<) . return  =  f                  :: c -> m d

          (f* . g)*  =  f* . g*            :  T(X) -> T(Z)   Associativity
(((f =<<) . g) =<<)  =  (f =<<) . (g =<<)  :: m a -> m c

Monads也可以不使用Kleislian扩展来定义,而是在称为join的编程中使用自然转换mu来定义。一个单元是用μ来定义的,它是一个内函子的范畴C上的三元组

     T :  C -> C
     f :: * -> *

和两种自然变形

   eta :  Id -> T
return :: t  -> f t

    mu :  T . T   -> T
  join :: f (f t) -> f t

满足等效条件

       mu . T(mu)  =  mu . mu               :  T . T . T -> T . T   Associativity
  join . map join  =  join . join           :: f (f (f t)) -> f t

      mu . T(eta)  =  mu . eta       =  id  :  T -> T               Identity
join . map return  =  join . return  =  id  :: f t -> f t

然后定义monad类型类

class Functor m => Monad m where
   return :: t -> m t
   join   :: m (m t) -> m t

选项monad的规范mu实现:

instance Monad Maybe where
   return = Just

   join (Just m) = m
   join Nothing  = Nothing

concat函数

concat :: [[a]] -> [a]
concat (x : xs) = x ++ concat xs
concat []       = []

是列表monad的连接。

instance Monad [] where
   return :: t -> [t]
   return = (: [])

   (=<<) :: (a -> [b]) -> ([a] -> [b])
   (f =<<) = concat . map f

联接的实现可以使用等价项从扩展形式转换

     mu  =  id*           :  T . T -> T
   join  =  (id =<<)      :: m (m t) -> m t

从mu到扩展形式的反向转换如下

     f*  =  mu . T(f)     :  T(X) -> T(Y)
(f =<<)  =  join . map f  :: m a -> m b

Philip Wadler:函数编程的MonadsSimon L Peyton Jones,Philip Wadler:强制函数式编程Jonathan M.D.Hill,Keith Clarke:范畴理论、范畴理论单子及其与函数编程的关系简介´Kleisli类别Eugenio Moggi:计算和单子的概念莫纳德不是什么

但为什么如此抽象的理论对编程有用呢?答案很简单:作为计算机科学家,我们重视抽象!当我们设计软件组件的接口时,我们希望它尽可能少地揭示实现。我们希望能够用许多替代方案来替代实现,许多其他“实例”都是相同的“概念”。当我们为许多程序库设计通用接口时,更重要的是我们选择的接口具有多种实现。我们非常重视monad概念的普遍性,这是因为范畴理论非常抽象,所以它的概念对编程非常有用。因此,我们在下面介绍的单子的推广也与范畴理论有着密切的联系,这一点不足为奇。但我们强调,我们的目的非常实用:它不是“实现范畴理论”,而是找到一种更通用的方法来构造组合子库。数学家已经为我们做了很多工作,这是我们的幸运!

从约翰·休斯的《概括单子到箭头》

解释“什么是monad”有点像说“什么是数字?”我们总是使用数字。但想象一下,你遇到了一个对数字一无所知的人。你怎么解释数字是什么?你怎么开始描述为什么这可能有用?

什么是单子?简单的回答是:这是一种将操作链接在一起的特定方式。

本质上,您正在编写执行步骤,并将它们与“绑定函数”链接在一起。(在Haskell中,它名为>>=。)您可以自己编写对绑定运算符的调用,也可以使用语法糖,使编译器为您插入这些函数调用。但无论哪种方式,每个步骤都由对该绑定函数的调用分隔。

因此绑定函数就像分号;它将流程中的步骤分开。bind函数的任务是获取上一步的输出,并将其输入下一步。

听起来不太难,对吧?但单子不止一种。为什么?怎样

好吧,bind函数可以从一个步骤中获取结果,并将其传递给下一个步骤。但如果这就是单子的全部。。。这实际上不是很有用。理解这一点很重要:每个有用的monad除了做monad之外,还做其他事情。每一个有用的单子都有一种“特殊的力量”,这使它独一无二。

(没有什么特别作用的monad被称为“身份monad”。与身份函数类似,这听起来是一件毫无意义的事情,但事实证明并非如此……但这是另一回事™.)

基本上,每个monad都有自己的绑定函数实现。你可以编写一个绑定函数,这样它就可以在执行步骤之间做一些傻事。例如:

如果每个步骤都返回一个成功/失败指示符,则只有在前一个步骤成功的情况下,才能让绑定执行下一个步骤。这样,失败的步骤“自动”中止整个序列,而无需您进行任何条件测试。(故障单)扩展这个想法,您可以实现“异常”。(错误单点或异常单点。)因为您自己定义它们,而不是将其作为一种语言特性,所以您可以定义它们的工作方式。(例如,您可能希望忽略前两个异常,仅在引发第三个异常时中止。)您可以使每个步骤返回多个结果,并让bind函数对其进行循环,将每个结果输入到下一步。这样,在处理多个结果时,就不必一直到处写循环。绑定函数“自动”为您完成所有这些。(单子)除了将“结果”从一个步骤传递到另一个步骤之外,还可以让bind函数传递额外的数据。这些数据现在不会显示在源代码中,但您仍然可以从任何地方访问它,而无需手动将其传递给每个函数。(《读者》杂志)您可以这样做,以便可以替换“额外数据”。这允许您模拟破坏性更新,而无需实际执行破坏性更新。(莫纳德州及其堂弟作家莫纳德。)因为您只是在模拟破坏性更新,所以您可以轻松地完成真正的破坏性更新所无法完成的事情。例如,您可以撤消上一次更新,或恢复到旧版本。你可以制作一个可以暂停计算的monad,这样你就可以暂停你的程序,进入并修补内部状态数据,然后恢复它。您可以将“continuations”实现为monad。这可以让你打破人们的想法!

所有这些和更多的都可以通过monad实现。当然,这一切在没有单子的情况下也是完全可能的。使用monad非常简单。

事实上,与一般人对蒙得斯的理解相反,他们与国家无关。Monads只是一种包装东西的方法,它提供了对包装好的东西进行操作而不展开的方法。

例如,您可以在Haskell中创建一个类型来包装另一个类型:

data Wrapped a = Wrap a

包装我们定义的东西

return :: a -> Wrapped a
return x = Wrap x

要在不展开的情况下执行操作,假设您有一个函数f::a->b,然后您可以执行此操作来提升该函数以作用于包装的值:

fmap :: (a -> b) -> (Wrapped a -> Wrapped b)
fmap f (Wrap x) = Wrap (f x)

这就是所有需要理解的。然而,事实证明,有一个更通用的函数来执行此提升,即bind:

bind :: (a -> Wrapped b) -> (Wrapped a -> Wrapped b)
bind f (Wrap x) = f x

bind可以比fmap做得更多,但反之亦然。实际上,fmap只能用绑定和返回来定义。因此,在定义monad时。。您给出它的类型(这里是Wrapped a),然后说明它的返回和绑定操作是如何工作的。

很酷的是,这是一个普遍的模式,它会在所有地方弹出,以纯方式封装状态只是其中之一。

有关如何使用monad来引入函数依赖关系,从而控制求值顺序(如Haskell的IO monad中所用)的好文章,请查看IOInside。

至于理解单子,不要太担心。读一些你觉得有趣的东西,如果你不马上理解,也不要担心。那就用Haskell这样的语言潜水吧。修道院就是这样一种东西,在那里,通过练习,理解慢慢地进入你的大脑,有一天你突然意识到你理解了它们。

公主对F#计算表达式的解释帮助了我,尽管我仍然不能说我真的理解了。

编辑:这个系列-用javascript解释monad-对我来说是一个“打破平衡”的系列。

http://blog.jcoglan.com/2011/03/05/translation-from-haskell-to-javascript-of-selected-portions-of-the-best-introduction-to-monads-ive-ever-read/http://blog.jcoglan.com/2011/03/06/monad-syntax-for-javascript/http://blog.jcoglan.com/2011/03/11/promises-are-the-monad-of-asynchronous-programming/

我认为理解单子是一件让你毛骨悚然的事。从这个意义上说,尽可能多地阅读“教程”是一个好主意,但通常奇怪的东西(不熟悉的语言或语法)会让你的大脑无法专注于基本内容。

有些事情我很难理解:

基于规则的解释对我来说从未奏效,因为大多数实际示例实际上需要的不仅仅是返回/绑定。此外,称之为规则也无济于事。这更像是“有些东西有共同点,我们把它们称为‘单子’,把共同点称为‘规则’”。Return(a->M<a>)和Bind(M<a>->(a->M<b>)->M<b>)很好,但我永远无法理解Bind如何从M<a>中提取a,以便将其传递给a->M<b>。我不认为我在任何地方读过(也许这对其他人来说都很明显),Return(M<a>->a)的反面必须存在于monad内部,它只是不需要暴露。

解释monad似乎就像解释控制流语句一样。想象一下,一个非程序员要求你解释它们?

你可以给他们一个涉及理论的解释——布尔逻辑、寄存器值、指针、堆栈和框架。但那太疯狂了。

你可以用语法来解释它们。基本上,C中的所有控制流语句都有大括号,您可以通过它们相对于括号的位置来区分条件和条件代码。这可能更疯狂。

或者,您也可以解释循环、if语句、例程、子例程以及可能的协例程。

Monad可以取代相当多的编程技术。语言中有一种特定的语法支持它们,还有一些关于它们的理论。

它们也是函数式程序员使用命令式代码而不承认它的一种方式,但这并不是他们唯一的用途。