在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

解释“什么是monad”有点像说“什么是数字?”我们总是使用数字。但想象一下,你遇到了一个对数字一无所知的人。你怎么解释数字是什么?你怎么开始描述为什么这可能有用?

什么是单子?简单的回答是:这是一种将操作链接在一起的特定方式。

本质上,您正在编写执行步骤,并将它们与“绑定函数”链接在一起。(在Haskell中,它名为>>=。)您可以自己编写对绑定运算符的调用,也可以使用语法糖,使编译器为您插入这些函数调用。但无论哪种方式,每个步骤都由对该绑定函数的调用分隔。

因此绑定函数就像分号;它将流程中的步骤分开。bind函数的任务是获取上一步的输出,并将其输入下一步。

听起来不太难,对吧?但单子不止一种。为什么?怎样

好吧,bind函数可以从一个步骤中获取结果,并将其传递给下一个步骤。但如果这就是单子的全部。。。这实际上不是很有用。理解这一点很重要:每个有用的monad除了做monad之外,还做其他事情。每一个有用的单子都有一种“特殊的力量”,这使它独一无二。

(没有什么特别作用的monad被称为“身份monad”。与身份函数类似,这听起来是一件毫无意义的事情,但事实证明并非如此……但这是另一回事™.)

基本上,每个monad都有自己的绑定函数实现。你可以编写一个绑定函数,这样它就可以在执行步骤之间做一些傻事。例如:

如果每个步骤都返回一个成功/失败指示符,则只有在前一个步骤成功的情况下,才能让绑定执行下一个步骤。这样,失败的步骤“自动”中止整个序列,而无需您进行任何条件测试。(故障单)扩展这个想法,您可以实现“异常”。(错误单点或异常单点。)因为您自己定义它们,而不是将其作为一种语言特性,所以您可以定义它们的工作方式。(例如,您可能希望忽略前两个异常,仅在引发第三个异常时中止。)您可以使每个步骤返回多个结果,并让bind函数对其进行循环,将每个结果输入到下一步。这样,在处理多个结果时,就不必一直到处写循环。绑定函数“自动”为您完成所有这些。(单子)除了将“结果”从一个步骤传递到另一个步骤之外,还可以让bind函数传递额外的数据。这些数据现在不会显示在源代码中,但您仍然可以从任何地方访问它,而无需手动将其传递给每个函数。(《读者》杂志)您可以这样做,以便可以替换“额外数据”。这允许您模拟破坏性更新,而无需实际执行破坏性更新。(莫纳德州及其堂弟作家莫纳德。)因为您只是在模拟破坏性更新,所以您可以轻松地完成真正的破坏性更新所无法完成的事情。例如,您可以撤消上一次更新,或恢复到旧版本。你可以制作一个可以暂停计算的monad,这样你就可以暂停你的程序,进入并修补内部状态数据,然后恢复它。您可以将“continuations”实现为monad。这可以让你打破人们的想法!

所有这些和更多的都可以通过monad实现。当然,这一切在没有单子的情况下也是完全可能的。使用monad非常简单。

其他回答

另一种尝试是解释monad,只使用Python列表和map函数。我完全接受这不是一个完整的解释,但我希望它能触及核心概念。

我从Monads上的funfunfunction视频和Learn You A Haskell章节“为了几个Monads更多”中得到了这一点的基础。我强烈推荐观看funfunfunction视频。

最简单的是,Monad是具有map和flatMap函数(在Haskell中绑定)的对象。有一些额外的必需财产,但这些是核心属性。

flatMap“展平”map的输出,对于列表,这只是连接列表的值,例如。

concat([[1], [4], [9]]) = [1, 4, 9]

因此,在Python中,我们基本上可以通过以下两个函数实现Monad:

def flatMap(func, lst):
    return concat(map(func, lst))

def concat(lst):
    return sum(lst, [])

func是任何接受值并返回列表的函数。

lambda x: [x*x]

解释

为了清楚起见,我通过一个简单的函数在Python中创建了concat函数,该函数将列表相加,即[]+[1]+[4]+[9]=[1,4,9](Haskell有一个原生的concat方法)。

我假设你知道地图功能是什么,例如:

>>> list(map(lambda x: [x*x], [1,2,3]))
[[1], [4], [9]]

展平是Monad的关键概念,对于每个作为Monad的对象,这种展平允许您获得Monad中包裹的值。

现在我们可以呼叫:

>>> flatMap(lambda x: [x*x], [1,2,3])
[1, 4, 9]

这个lambda取一个值x并将其放入一个列表中。monad适用于从值到monad类型的任何函数,所以在本例中是列表。

这是你的monad定义。

我认为为什么它们有用的问题已经在其他问题中得到了回答。

更多说明

其他不是列表的例子有JavaScript Promise,它有then方法,JavaScript Streams有flatMap方法。

因此Promise和Streams使用了一个稍微不同的函数,它将Stream或Promise展平,并从内部返回值。

Haskell列表monad具有以下定义:

instance Monad [] where  
    return x = [x]  
    xs >>= f = concat (map f xs)  
    fail _ = [] 

即有三个函数return(不要与大多数其他语言中的return混淆)、>>=(flatMap)和fail。

希望您能看到以下两者之间的相似之处:

xs >>= f = concat (map f xs)

and:

def flatMap(f, xs):
    return concat(map(f, xs))

让下面的“{|a|m}”表示一些一元数据。宣传以下内容的数据类型:

        (I got an a!)
          /        
    {| a |m}

函数f知道如何创建monad,只要它有一个a:

       (Hi f! What should I be?)
                      /
(You?. Oh, you'll be /
 that data there.)  /
 /                 /  (I got a b.)
|    --------------      |
|  /                     |
f a                      |
  |--later->       {| b |m}

在这里,我们看到函数f试图评估monad,但遭到了谴责。

(Hmm, how do I get that a?)
 o       (Get lost buddy.
o         Wrong type.)
o       /
f {| a |m}

函数f通过使用>>=找到提取a的方法。

        (Muaahaha. How you 
         like me now!?)       
    (Better.)      \
        |     (Give me that a.)
(Fine, well ok.)    |
         \          |
   {| a |m}   >>=   f

殊不知,monad和>>=勾结在一起。

            (Yah got an a for me?)       
(Yeah, but hey    | 
 listen. I got    |
 something to     |
 tell you first   |
 ...)   \        /
         |      /
   {| a |m}   >>=   f

但他们实际上在谈论什么?嗯,这取决于单子。仅仅抽象地谈论用处有限;你必须对特定的单子有一些经验,才能充实理解。

例如,数据类型Maybe

 data Maybe a = Nothing | Just a

有一个monad实例,其行为如下。。。

其中,如果情况只是

            (Yah what is it?)       
(... hm? Oh,      |
forget about it.  |
Hey a, yr up.)    | 
            \     |
(Evaluation  \    |
time already? \   |
Hows my hair?) |  |
      |       /   |
      |  (It's    |
      |  fine.)  /
      |   /     /    
   {| a |m}   >>=   f

但对于Nothing的情况

        (Yah what is it?)       
(... There      |
is no a. )      |
  |        (No a?)
(No a.)         |
  |        (Ok, I'll deal
  |         with this.)
   \            |
    \      (Hey f, get lost.) 
     \          |   ( Where's my a? 
      \         |     I evaluate a)
       \    (Not any more  |
        \    you don't.    |
         |   We're returning
         |   Nothing.)   /
         |      |       /
         |      |      /
         |      |     /
   {| a |m}   >>=   f      (I got a b.)
                    |  (This is   \
                    |   such a     \
                    |   sham.) o o  \
                    |               o|
                    |--later-> {| b |m}

因此,如果Maye monad实际上包含它所宣传的a,则它允许计算继续,但如果不包含,则中止计算。然而,结果仍然是一段单元数据,尽管不是f的输出。因此,Maye monad用于表示失败的上下文。

不同的单子叶植物表现不同。列表是具有一元实例的其他类型的数据。它们的行为如下:

(Ok, here's your a. Well, its
 a bunch of them, actually.)
  |
  |    (Thanks, no problem. Ok
  |     f, here you go, an a.)
  |       |
  |       |        (Thank's. See
  |       |         you later.)
  |  (Whoa. Hold up f,      |
  |   I got another         |
  |   a for you.)           |
  |       |      (What? No, sorry.
  |       |       Can't do it. I 
  |       |       have my hands full
  |       |       with all these "b" 
  |       |       I just made.) 
  |  (I'll hold those,      |
  |   you take this, and   /
  |   come back for more  /
  |   when you're done   / 
  |   and we'll do it   / 
  |   again.)          /
   \      |  ( Uhhh. All right.)
    \     |       /    
     \    \      /
{| a |m}   >>=  f  

在这种情况下,该函数知道如何从其输入生成列表,但不知道如何处理额外的输入和额外的列表。bind>>=,通过组合多个输出帮助f。我通过这个例子来说明,当>>=负责提取a时,它也可以访问f的最终绑定输出。事实上,除非它知道最终输出具有相同类型的上下文,否则它永远不会提取任何a。

还有其他monad用于表示不同的上下文。下面是一些其他特征。IO monad实际上没有a,但它认识一个人,会为你拿到a。州立大学圣莫尼德分校有一个秘密的圣莫尼德,它会把圣莫尼德藏在桌子下面给f,尽管f只是来要求一个a。

所有这一切的关键是,任何类型的数据如果声明自己是Monad,都会声明某种上下文来从Monad中提取值。从这一切中获得的巨大收益?好吧,用某种上下文来进行计算是很容易的。然而,当将多个上下文负载的计算串联在一起时,可能会变得混乱。monad操作负责解决上下文的交互,因此程序员不必这样做。

注意,>>=的使用通过从f中移除一些自主权来缓解混乱。也就是说,例如,在上面的Nothing情况下,f不再能够决定在Nothing的情况下要做什么;它被编码为>>=。这就是权衡。如果f有必要决定在Nothing的情况下做什么,那么f应该是从Maybe a到Maybe b的函数。在这种情况下,也许是monad是无关紧要的。

然而,请注意,有时数据类型不会导出它的构造函数(看看你的IO),如果我们想使用广告值,我们别无选择,只能使用它的monadic接口。

在了解这些信息时,对我帮助最大的两件事是:

第8章,“函数解析器”,摘自Graham Hutton的《Haskell编程》一书。实际上,这根本没有提到monad,但如果您能够通读第章并真正理解其中的所有内容,特别是如何评估一系列绑定操作,您将了解monad的内部结构。预计这需要多次尝试。

关于修道院的教程。这提供了几个很好的例子来说明它们的用途,我不得不说,我在Appendex中的类比是为我工作的。

这个答案从一个激励性的例子开始,通过这个例子,得出一个单子的例子,并正式定义了“单子”。

考虑伪代码中的这三个函数:

f(<x, messages>) := <x, messages "called f. ">
g(<x, messages>) := <x, messages "called g. ">
wrap(x)          := <x, "">

f采用<x,messages>形式的有序对,并返回一个有序对。它保持第一项不变,并在第二项后面附加“called f.”。与g相同。

您可以组合这些函数并获得原始值,以及显示函数调用顺序的字符串:

  f(g(wrap(x)))
= f(g(<x, "">))
= f(<x, "called g. ">)
= <x, "called g. called f. ">

您不喜欢f和g负责将自己的日志消息附加到先前的日志信息。(为了论证起见,想象一下,f和g必须对这对中的第二项执行复杂的逻辑,而不是附加字符串。在两个或多个不同的函数中重复这种复杂的逻辑会很痛苦。)

您更喜欢编写更简单的函数:

f(x)    := <x, "called f. ">
g(x)    := <x, "called g. ">
wrap(x) := <x, "">

但看看当你编写它们时会发生什么:

  f(g(wrap(x)))
= f(g(<x, "">))
= f(<<x, "">, "called g. ">)
= <<<x, "">, "called g. ">, "called f. ">

问题是,将一对传递到函数中并不能得到所需的结果。但如果你可以将一对输入到函数中呢:

  feed(f, feed(g, wrap(x)))
= feed(f, feed(g, <x, "">))
= feed(f, <x, "called g. ">)
= <x, "called g. called f. ">

将feed(f,m)读为“feed m into f”。要将一对<x,messages>输入函数f,需要将x传递给f,从f中获取<y,messages〕,并返回<y,message message>。

feed(f, <x, messages>) := let <y, message> = f(x)
                          in  <y, messages message>

请注意,当您对函数执行三项操作时会发生什么:

首先:如果包装一个值,然后将结果对送入函数:

  feed(f, wrap(x))
= feed(f, <x, "">)
= let <y, message> = f(x)
  in  <y, "" message>
= let <y, message> = <x, "called f. ">
  in  <y, "" message>
= <x, "" "called f. ">
= <x, "called f. ">
= f(x)

这与将值传递给函数相同。

第二:如果你把一对放进包装里:

  feed(wrap, <x, messages>)
= let <y, message> = wrap(x)
  in  <y, messages message>
= let <y, message> = <x, "">
  in  <y, messages message>
= <x, messages "">
= <x, messages>

这不会改变这对。

第三:如果定义了一个函数,该函数将x和g(x)输入f:

h(x) := feed(f, g(x))

并向其中输入一对:

  feed(h, <x, messages>)
= let <y, message> = h(x)
  in  <y, messages message>
= let <y, message> = feed(f, g(x))
  in  <y, messages message>
= let <y, message> = feed(f, <x, "called g. ">)
  in  <y, messages message>
= let <y, message> = let <z, msg> = f(x)
                     in  <z, "called g. " msg>
  in <y, messages message>
= let <y, message> = let <z, msg> = <x, "called f. ">
                     in  <z, "called g. " msg>
  in <y, messages message>
= let <y, message> = <x, "called g. " "called f. ">
  in <y, messages message>
= <x, messages "called g. " "called f. ">
= feed(f, <x, messages "called g. ">)
= feed(f, feed(g, <x, messages>))

这与将对输入g和将所得对输入f相同。

你有大部分的单子。现在您只需要了解程序中的数据类型。

<x,“称为f”>是什么类型的值?这取决于x是什么类型的值。如果x是t类型的,那么你的对就是“t和字符串对”类型的值了。称之为M型。

M是一个类型构造器:M本身并不表示一个类型,但一旦你用一个类型填空,M _就表示一个。M int是一对int和一个字符串。M字符串是一对字符串和一个字符串。等

恭喜你,你已经创建了monad!

形式上,你的monad是元组<M,feed,wrap>。

monad是一个元组<M,feed,wrap>,其中:

M是类型构造函数。feed接受一个(函数接受一个t并返回一个M u)和一个M t并返回M u。wrap接受一个v并返回一个M v。

t、 u和v是可以相同也可以不同的任意三种类型。单子满足您为特定单子证明的三个财产:

将包裹的t送入函数与将未包裹的t传入函数相同。形式上:饲料(f,包装(x))=f(x)将M t喂入包装物对M t没有任何影响。形式上:进给(包裹,m)=m将一个M t(称为M)输入一个函数将t传递到g从g得到一个M u(称为n)将n输入f与m进g从g得到n将n输入f形式上:饲料(h,m)=饲料(f,饲料(g,m)),其中h(x):=饲料(f,g(x))

通常,feed称为bind(在Haskell中为AKA>>=),wrap称为return。

公主对F#计算表达式的解释帮助了我,尽管我仍然不能说我真的理解了。

编辑:这个系列-用javascript解释monad-对我来说是一个“打破平衡”的系列。

http://blog.jcoglan.com/2011/03/05/translation-from-haskell-to-javascript-of-selected-portions-of-the-best-introduction-to-monads-ive-ever-read/http://blog.jcoglan.com/2011/03/06/monad-syntax-for-javascript/http://blog.jcoglan.com/2011/03/11/promises-are-the-monad-of-asynchronous-programming/

我认为理解单子是一件让你毛骨悚然的事。从这个意义上说,尽可能多地阅读“教程”是一个好主意,但通常奇怪的东西(不熟悉的语言或语法)会让你的大脑无法专注于基本内容。

有些事情我很难理解:

基于规则的解释对我来说从未奏效,因为大多数实际示例实际上需要的不仅仅是返回/绑定。此外,称之为规则也无济于事。这更像是“有些东西有共同点,我们把它们称为‘单子’,把共同点称为‘规则’”。Return(a->M<a>)和Bind(M<a>->(a->M<b>)->M<b>)很好,但我永远无法理解Bind如何从M<a>中提取a,以便将其传递给a->M<b>。我不认为我在任何地方读过(也许这对其他人来说都很明显),Return(M<a>->a)的反面必须存在于monad内部,它只是不需要暴露。