在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
当前回答
解释“什么是monad”有点像说“什么是数字?”我们总是使用数字。但想象一下,你遇到了一个对数字一无所知的人。你怎么解释数字是什么?你怎么开始描述为什么这可能有用?
什么是单子?简单的回答是:这是一种将操作链接在一起的特定方式。
本质上,您正在编写执行步骤,并将它们与“绑定函数”链接在一起。(在Haskell中,它名为>>=。)您可以自己编写对绑定运算符的调用,也可以使用语法糖,使编译器为您插入这些函数调用。但无论哪种方式,每个步骤都由对该绑定函数的调用分隔。
因此绑定函数就像分号;它将流程中的步骤分开。bind函数的任务是获取上一步的输出,并将其输入下一步。
听起来不太难,对吧?但单子不止一种。为什么?怎样
好吧,bind函数可以从一个步骤中获取结果,并将其传递给下一个步骤。但如果这就是单子的全部。。。这实际上不是很有用。理解这一点很重要:每个有用的monad除了做monad之外,还做其他事情。每一个有用的单子都有一种“特殊的力量”,这使它独一无二。
(没有什么特别作用的monad被称为“身份monad”。与身份函数类似,这听起来是一件毫无意义的事情,但事实证明并非如此……但这是另一回事™.)
基本上,每个monad都有自己的绑定函数实现。你可以编写一个绑定函数,这样它就可以在执行步骤之间做一些傻事。例如:
如果每个步骤都返回一个成功/失败指示符,则只有在前一个步骤成功的情况下,才能让绑定执行下一个步骤。这样,失败的步骤“自动”中止整个序列,而无需您进行任何条件测试。(故障单)扩展这个想法,您可以实现“异常”。(错误单点或异常单点。)因为您自己定义它们,而不是将其作为一种语言特性,所以您可以定义它们的工作方式。(例如,您可能希望忽略前两个异常,仅在引发第三个异常时中止。)您可以使每个步骤返回多个结果,并让bind函数对其进行循环,将每个结果输入到下一步。这样,在处理多个结果时,就不必一直到处写循环。绑定函数“自动”为您完成所有这些。(单子)除了将“结果”从一个步骤传递到另一个步骤之外,还可以让bind函数传递额外的数据。这些数据现在不会显示在源代码中,但您仍然可以从任何地方访问它,而无需手动将其传递给每个函数。(《读者》杂志)您可以这样做,以便可以替换“额外数据”。这允许您模拟破坏性更新,而无需实际执行破坏性更新。(莫纳德州及其堂弟作家莫纳德。)因为您只是在模拟破坏性更新,所以您可以轻松地完成真正的破坏性更新所无法完成的事情。例如,您可以撤消上一次更新,或恢复到旧版本。你可以制作一个可以暂停计算的monad,这样你就可以暂停你的程序,进入并修补内部状态数据,然后恢复它。您可以将“continuations”实现为monad。这可以让你打破人们的想法!
所有这些和更多的都可以通过monad实现。当然,这一切在没有单子的情况下也是完全可能的。使用monad非常简单。
其他回答
另一种尝试是解释monad,只使用Python列表和map函数。我完全接受这不是一个完整的解释,但我希望它能触及核心概念。
我从Monads上的funfunfunction视频和Learn You A Haskell章节“为了几个Monads更多”中得到了这一点的基础。我强烈推荐观看funfunfunction视频。
最简单的是,Monad是具有map和flatMap函数(在Haskell中绑定)的对象。有一些额外的必需财产,但这些是核心属性。
flatMap“展平”map的输出,对于列表,这只是连接列表的值,例如。
concat([[1], [4], [9]]) = [1, 4, 9]
因此,在Python中,我们基本上可以通过以下两个函数实现Monad:
def flatMap(func, lst):
return concat(map(func, lst))
def concat(lst):
return sum(lst, [])
func是任何接受值并返回列表的函数。
lambda x: [x*x]
解释
为了清楚起见,我通过一个简单的函数在Python中创建了concat函数,该函数将列表相加,即[]+[1]+[4]+[9]=[1,4,9](Haskell有一个原生的concat方法)。
我假设你知道地图功能是什么,例如:
>>> list(map(lambda x: [x*x], [1,2,3]))
[[1], [4], [9]]
展平是Monad的关键概念,对于每个作为Monad的对象,这种展平允许您获得Monad中包裹的值。
现在我们可以呼叫:
>>> flatMap(lambda x: [x*x], [1,2,3])
[1, 4, 9]
这个lambda取一个值x并将其放入一个列表中。monad适用于从值到monad类型的任何函数,所以在本例中是列表。
这是你的monad定义。
我认为为什么它们有用的问题已经在其他问题中得到了回答。
更多说明
其他不是列表的例子有JavaScript Promise,它有then方法,JavaScript Streams有flatMap方法。
因此Promise和Streams使用了一个稍微不同的函数,它将Stream或Promise展平,并从内部返回值。
Haskell列表monad具有以下定义:
instance Monad [] where
return x = [x]
xs >>= f = concat (map f xs)
fail _ = []
即有三个函数return(不要与大多数其他语言中的return混淆)、>>=(flatMap)和fail。
希望您能看到以下两者之间的相似之处:
xs >>= f = concat (map f xs)
and:
def flatMap(f, xs):
return concat(map(f, xs))
让下面的“{|a|m}”表示一些一元数据。宣传以下内容的数据类型:
(I got an a!)
/
{| a |m}
函数f知道如何创建monad,只要它有一个a:
(Hi f! What should I be?)
/
(You?. Oh, you'll be /
that data there.) /
/ / (I got a b.)
| -------------- |
| / |
f a |
|--later-> {| b |m}
在这里,我们看到函数f试图评估monad,但遭到了谴责。
(Hmm, how do I get that a?)
o (Get lost buddy.
o Wrong type.)
o /
f {| a |m}
函数f通过使用>>=找到提取a的方法。
(Muaahaha. How you
like me now!?)
(Better.) \
| (Give me that a.)
(Fine, well ok.) |
\ |
{| a |m} >>= f
殊不知,monad和>>=勾结在一起。
(Yah got an a for me?)
(Yeah, but hey |
listen. I got |
something to |
tell you first |
...) \ /
| /
{| a |m} >>= f
但他们实际上在谈论什么?嗯,这取决于单子。仅仅抽象地谈论用处有限;你必须对特定的单子有一些经验,才能充实理解。
例如,数据类型Maybe
data Maybe a = Nothing | Just a
有一个monad实例,其行为如下。。。
其中,如果情况只是
(Yah what is it?)
(... hm? Oh, |
forget about it. |
Hey a, yr up.) |
\ |
(Evaluation \ |
time already? \ |
Hows my hair?) | |
| / |
| (It's |
| fine.) /
| / /
{| a |m} >>= f
但对于Nothing的情况
(Yah what is it?)
(... There |
is no a. ) |
| (No a?)
(No a.) |
| (Ok, I'll deal
| with this.)
\ |
\ (Hey f, get lost.)
\ | ( Where's my a?
\ | I evaluate a)
\ (Not any more |
\ you don't. |
| We're returning
| Nothing.) /
| | /
| | /
| | /
{| a |m} >>= f (I got a b.)
| (This is \
| such a \
| sham.) o o \
| o|
|--later-> {| b |m}
因此,如果Maye monad实际上包含它所宣传的a,则它允许计算继续,但如果不包含,则中止计算。然而,结果仍然是一段单元数据,尽管不是f的输出。因此,Maye monad用于表示失败的上下文。
不同的单子叶植物表现不同。列表是具有一元实例的其他类型的数据。它们的行为如下:
(Ok, here's your a. Well, its
a bunch of them, actually.)
|
| (Thanks, no problem. Ok
| f, here you go, an a.)
| |
| | (Thank's. See
| | you later.)
| (Whoa. Hold up f, |
| I got another |
| a for you.) |
| | (What? No, sorry.
| | Can't do it. I
| | have my hands full
| | with all these "b"
| | I just made.)
| (I'll hold those, |
| you take this, and /
| come back for more /
| when you're done /
| and we'll do it /
| again.) /
\ | ( Uhhh. All right.)
\ | /
\ \ /
{| a |m} >>= f
在这种情况下,该函数知道如何从其输入生成列表,但不知道如何处理额外的输入和额外的列表。bind>>=,通过组合多个输出帮助f。我通过这个例子来说明,当>>=负责提取a时,它也可以访问f的最终绑定输出。事实上,除非它知道最终输出具有相同类型的上下文,否则它永远不会提取任何a。
还有其他monad用于表示不同的上下文。下面是一些其他特征。IO monad实际上没有a,但它认识一个人,会为你拿到a。州立大学圣莫尼德分校有一个秘密的圣莫尼德,它会把圣莫尼德藏在桌子下面给f,尽管f只是来要求一个a。
所有这一切的关键是,任何类型的数据如果声明自己是Monad,都会声明某种上下文来从Monad中提取值。从这一切中获得的巨大收益?好吧,用某种上下文来进行计算是很容易的。然而,当将多个上下文负载的计算串联在一起时,可能会变得混乱。monad操作负责解决上下文的交互,因此程序员不必这样做。
注意,>>=的使用通过从f中移除一些自主权来缓解混乱。也就是说,例如,在上面的Nothing情况下,f不再能够决定在Nothing的情况下要做什么;它被编码为>>=。这就是权衡。如果f有必要决定在Nothing的情况下做什么,那么f应该是从Maybe a到Maybe b的函数。在这种情况下,也许是monad是无关紧要的。
然而,请注意,有时数据类型不会导出它的构造函数(看看你的IO),如果我们想使用广告值,我们别无选择,只能使用它的monadic接口。
在了解这些信息时,对我帮助最大的两件事是:
第8章,“函数解析器”,摘自Graham Hutton的《Haskell编程》一书。实际上,这根本没有提到monad,但如果您能够通读第章并真正理解其中的所有内容,特别是如何评估一系列绑定操作,您将了解monad的内部结构。预计这需要多次尝试。
关于修道院的教程。这提供了几个很好的例子来说明它们的用途,我不得不说,我在Appendex中的类比是为我工作的。
这个答案从一个激励性的例子开始,通过这个例子,得出一个单子的例子,并正式定义了“单子”。
考虑伪代码中的这三个函数:
f(<x, messages>) := <x, messages "called f. ">
g(<x, messages>) := <x, messages "called g. ">
wrap(x) := <x, "">
f采用<x,messages>形式的有序对,并返回一个有序对。它保持第一项不变,并在第二项后面附加“called f.”。与g相同。
您可以组合这些函数并获得原始值,以及显示函数调用顺序的字符串:
f(g(wrap(x)))
= f(g(<x, "">))
= f(<x, "called g. ">)
= <x, "called g. called f. ">
您不喜欢f和g负责将自己的日志消息附加到先前的日志信息。(为了论证起见,想象一下,f和g必须对这对中的第二项执行复杂的逻辑,而不是附加字符串。在两个或多个不同的函数中重复这种复杂的逻辑会很痛苦。)
您更喜欢编写更简单的函数:
f(x) := <x, "called f. ">
g(x) := <x, "called g. ">
wrap(x) := <x, "">
但看看当你编写它们时会发生什么:
f(g(wrap(x)))
= f(g(<x, "">))
= f(<<x, "">, "called g. ">)
= <<<x, "">, "called g. ">, "called f. ">
问题是,将一对传递到函数中并不能得到所需的结果。但如果你可以将一对输入到函数中呢:
feed(f, feed(g, wrap(x)))
= feed(f, feed(g, <x, "">))
= feed(f, <x, "called g. ">)
= <x, "called g. called f. ">
将feed(f,m)读为“feed m into f”。要将一对<x,messages>输入函数f,需要将x传递给f,从f中获取<y,messages〕,并返回<y,message message>。
feed(f, <x, messages>) := let <y, message> = f(x)
in <y, messages message>
请注意,当您对函数执行三项操作时会发生什么:
首先:如果包装一个值,然后将结果对送入函数:
feed(f, wrap(x))
= feed(f, <x, "">)
= let <y, message> = f(x)
in <y, "" message>
= let <y, message> = <x, "called f. ">
in <y, "" message>
= <x, "" "called f. ">
= <x, "called f. ">
= f(x)
这与将值传递给函数相同。
第二:如果你把一对放进包装里:
feed(wrap, <x, messages>)
= let <y, message> = wrap(x)
in <y, messages message>
= let <y, message> = <x, "">
in <y, messages message>
= <x, messages "">
= <x, messages>
这不会改变这对。
第三:如果定义了一个函数,该函数将x和g(x)输入f:
h(x) := feed(f, g(x))
并向其中输入一对:
feed(h, <x, messages>)
= let <y, message> = h(x)
in <y, messages message>
= let <y, message> = feed(f, g(x))
in <y, messages message>
= let <y, message> = feed(f, <x, "called g. ">)
in <y, messages message>
= let <y, message> = let <z, msg> = f(x)
in <z, "called g. " msg>
in <y, messages message>
= let <y, message> = let <z, msg> = <x, "called f. ">
in <z, "called g. " msg>
in <y, messages message>
= let <y, message> = <x, "called g. " "called f. ">
in <y, messages message>
= <x, messages "called g. " "called f. ">
= feed(f, <x, messages "called g. ">)
= feed(f, feed(g, <x, messages>))
这与将对输入g和将所得对输入f相同。
你有大部分的单子。现在您只需要了解程序中的数据类型。
<x,“称为f”>是什么类型的值?这取决于x是什么类型的值。如果x是t类型的,那么你的对就是“t和字符串对”类型的值了。称之为M型。
M是一个类型构造器:M本身并不表示一个类型,但一旦你用一个类型填空,M _就表示一个。M int是一对int和一个字符串。M字符串是一对字符串和一个字符串。等
恭喜你,你已经创建了monad!
形式上,你的monad是元组<M,feed,wrap>。
monad是一个元组<M,feed,wrap>,其中:
M是类型构造函数。feed接受一个(函数接受一个t并返回一个M u)和一个M t并返回M u。wrap接受一个v并返回一个M v。
t、 u和v是可以相同也可以不同的任意三种类型。单子满足您为特定单子证明的三个财产:
将包裹的t送入函数与将未包裹的t传入函数相同。形式上:饲料(f,包装(x))=f(x)将M t喂入包装物对M t没有任何影响。形式上:进给(包裹,m)=m将一个M t(称为M)输入一个函数将t传递到g从g得到一个M u(称为n)将n输入f与m进g从g得到n将n输入f形式上:饲料(h,m)=饲料(f,饲料(g,m)),其中h(x):=饲料(f,g(x))
通常,feed称为bind(在Haskell中为AKA>>=),wrap称为return。
公主对F#计算表达式的解释帮助了我,尽管我仍然不能说我真的理解了。
编辑:这个系列-用javascript解释monad-对我来说是一个“打破平衡”的系列。
http://blog.jcoglan.com/2011/03/05/translation-from-haskell-to-javascript-of-selected-portions-of-the-best-introduction-to-monads-ive-ever-read/http://blog.jcoglan.com/2011/03/06/monad-syntax-for-javascript/http://blog.jcoglan.com/2011/03/11/promises-are-the-monad-of-asynchronous-programming/
我认为理解单子是一件让你毛骨悚然的事。从这个意义上说,尽可能多地阅读“教程”是一个好主意,但通常奇怪的东西(不熟悉的语言或语法)会让你的大脑无法专注于基本内容。
有些事情我很难理解:
基于规则的解释对我来说从未奏效,因为大多数实际示例实际上需要的不仅仅是返回/绑定。此外,称之为规则也无济于事。这更像是“有些东西有共同点,我们把它们称为‘单子’,把共同点称为‘规则’”。Return(a->M<a>)和Bind(M<a>->(a->M<b>)->M<b>)很好,但我永远无法理解Bind如何从M<a>中提取a,以便将其传递给a->M<b>。我不认为我在任何地方读过(也许这对其他人来说都很明显),Return(M<a>->a)的反面必须存在于monad内部,它只是不需要暴露。