在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

Monad用于控制流,就像抽象数据类型用于数据一样。

换句话说,许多开发人员对集合、列表、字典(或哈希、或地图)和树的概念很熟悉。在这些数据类型中有许多特殊情况(例如InsertionOrderPreservingIdentityHashMap)。

然而,当面对程序“流”时,许多开发人员还没有接触到比if、switch/case、do、while、goto(grr)和(可能)闭包更多的构造。

因此,monad只是一个控制流构造。替代monad的更好短语是“控制类型”。

因此,monad具有用于控制逻辑、语句或函数的槽——数据结构中的等价物是,某些数据结构允许您添加数据,并删除数据。

例如,“if”monad:

if( clause ) then block

最简单的是有两个槽:一个子句和一个块。if monad通常用于评估子句的结果,如果不是false,则评估块。许多开发人员在学习“如果”时并没有接触到monad,而且编写有效的逻辑并不需要理解monad。

monad可能会变得更复杂,就像数据结构可能变得更复杂一样,但monad有很多大类可能具有相似的语义,但实现和语法不同。

当然,数据结构可以在单子上迭代或遍历,也可以以同样的方式进行评估。

编译器可能支持也可能不支持用户定义的monad。哈斯克尔当然知道。Ioke有一些类似的功能,尽管语言中没有使用monad一词。

其他回答

最近我一直在以不同的方式思考莫纳斯。我一直认为它们以数学的方式抽象出执行顺序,这使得新类型的多态性成为可能。

如果您使用的是命令式语言,并且您按照顺序编写一些表达式,那么代码始终按照该顺序运行。

在简单的例子中,当你使用monad时,感觉是一样的——你定义了一个按顺序发生的表达式列表。除此之外,根据您使用的monad,您的代码可能会按顺序运行(如IO monad),同时在多个项目上并行运行(如List monad);它可能会中途停止(如Maybe monad)。它可能会在中途暂停以稍后恢复(如Resume monad)),或者它可能会中途倒带以尝试其他选项(如逻辑单声道)。

因为monad是多态的,所以可以根据需要在不同的monad中运行相同的代码。

此外,在某些情况下,可以将monad组合在一起(使用monad转换器)以同时获得多个特性。

公主对F#计算表达式的解释帮助了我,尽管我仍然不能说我真的理解了。

编辑:这个系列-用javascript解释monad-对我来说是一个“打破平衡”的系列。

http://blog.jcoglan.com/2011/03/05/translation-from-haskell-to-javascript-of-selected-portions-of-the-best-introduction-to-monads-ive-ever-read/http://blog.jcoglan.com/2011/03/06/monad-syntax-for-javascript/http://blog.jcoglan.com/2011/03/11/promises-are-the-monad-of-asynchronous-programming/

我认为理解单子是一件让你毛骨悚然的事。从这个意义上说,尽可能多地阅读“教程”是一个好主意,但通常奇怪的东西(不熟悉的语言或语法)会让你的大脑无法专注于基本内容。

有些事情我很难理解:

基于规则的解释对我来说从未奏效,因为大多数实际示例实际上需要的不仅仅是返回/绑定。此外,称之为规则也无济于事。这更像是“有些东西有共同点,我们把它们称为‘单子’,把共同点称为‘规则’”。Return(a->M<a>)和Bind(M<a>->(a->M<b>)->M<b>)很好,但我永远无法理解Bind如何从M<a>中提取a,以便将其传递给a->M<b>。我不认为我在任何地方读过(也许这对其他人来说都很明显),Return(M<a>->a)的反面必须存在于monad内部,它只是不需要暴露。

正如丹尼尔·斯皮瓦克(Daniel Spiewak)所解释的,修道院不是隐喻,而是从一种共同模式中产生的一种实用的抽象。

Monoid似乎可以确保在Monoid和受支持的类型上定义的所有操作始终返回Monoid内部的受支持类型。任何数字+任何数字=一个数字,没有错误。

而除法接受两个分数,并返回一个分数,该分数在haskell somewhy中将除以零定义为无穷大(恰好是分数somewhy)。。。

在任何情况下,Monads似乎只是一种确保您的操作链以可预测的方式运行的方法,而一个声称为Num->Num的函数,由另一个用x调用的Num->Num的函数组成,并不意味着发射导弹。

另一方面,如果我们有一个功能可以发射导弹,我们可以将它与其他功能组合起来,也可以发射导弹。

在Haskell中,main的类型是IO()或IO[()],这种区分很奇怪,我不会讨论它,但我认为会发生以下情况:

如果我有main,我希望它做一系列动作,我运行程序的原因是产生一个效果——通常是通过IO。因此,我可以将IO操作串联在一起,以便——做IO,而不是其他。

如果我尝试做一些不“返回IO”的事情,程序会抱怨链不流动,或者基本上“这与我们正在尝试做的事情有什么关系——IO动作”,这似乎迫使程序员保持思路,不偏离并思考发射导弹,同时创建排序算法——不流动。

基本上,Monads似乎是编译器的一个提示,“嘿,你知道这个函数在这里返回一个数字,它实际上并不总是有效的,它有时会产生一个number,有时什么都没有,请记住这一点”。知道了这一点,如果你试图断言一个单元动作,单元动作可能会作为一个编译时异常,说“嘿,这实际上不是一个数字,这可能是一个数字。但你不能假设这一点。做一些事情以确保流是可接受的。”这在一定程度上防止了不可预测的程序行为。

似乎monad不是关于纯粹性,也不是关于控制,而是关于维护一个类别的身份,在这个类别上,所有行为都是可预测和定义的,或者不编译。当你被要求做某事时,你不能什么都不做,如果你被要求什么都不干(可见),你也不能做。

我能想到的Monads的最大原因是——看看程序/OOP代码,你会发现你不知道程序从哪里开始,也不知道程序的结束,你看到的只是大量的跳跃和大量的数学、魔法和导弹。您将无法维护它,如果可以的话,您将花费大量的时间来思考整个程序,然后才能理解其中的任何部分,因为在这种情况下,模块化是基于代码的相互依赖的“部分”,其中代码被优化为尽可能相关,以保证效率/相互关系。单子是非常具体的,并且通过定义得到了很好的定义,并确保程序流程可以进行分析,并隔离难以分析的部分——因为它们本身就是单子。monad似乎是一个“可理解的单元,它在完全理解时是可预测的”——如果你理解“可能”monad,那么它除了“可能”之外就没有可能做任何事情,这看起来微不足道,但在大多数非monad代码中,一个简单的函数“helloworld”可以发射导弹,什么都不做,或者摧毁宇宙,甚至扭曲时间——我们不知道也不能保证它是什么样子。一个单子保证它就是什么样子。这是非常强大的。

“现实世界”中的所有事物似乎都是单子,因为它受到防止混淆的明确可观察规律的约束。这并不意味着我们必须模仿这个对象的所有操作来创建类,相反,我们可以简单地说“一个正方形就是一个正方形”,只不过是一个正方形,甚至不是矩形或圆形,和“一个正方形的面积是它现有维度的长度乘以它自身的面积。无论你有什么正方形,如果它是2D空间中的正方形,它的面积绝对不能是任何东西,只有它的长度平方,这几乎是微不足道的。这是非常强大的,因为我们不需要断言我们的世界是这样的,我们只需要使用现实的含义来预测它。”防止我们的节目偏离轨道。

我几乎可以肯定是错的,但我认为这可以帮助一些人,所以希望它能帮助一些人。

Monad是一个可应用的(即,你可以将二进制(因此,“n元”)函数提升到(1),并将纯值注入(2))Functor(即,可以映射到(3)的函数,即提升一元函数到(3”),它还具有展平嵌套数据类型的能力(三个概念中的每一个都遵循其相应的一组规则)。在Haskell中,这种扁平化操作称为join。

此“联接”操作的常规(通用、参数化)类型为:

join  ::  Monad m  =>  m (m a)  ->  m a

对于任何monad m(注意,类型中的所有ms都是相同的!)。

特定的m monad定义了其特定版本的join,该版本适用于由类型m A的monadic值“携带”的任何值类型A。某些特定类型包括:

join  ::  [[a]]           -> [a]         -- for lists, or nondeterministic values
join  ::  Maybe (Maybe a) -> Maybe a     -- for Maybe, or optional values
join  ::  IO    (IO    a) -> IO    a     -- for I/O-produced values

连接操作将产生a型值的m计算的m计算转换为a型值组合的m计算。这允许将计算步骤组合成一个更大的计算。

结合“bind”(>>=)运算符的计算步骤简单地使用fmap和join,即。

(ma >>= k)  ==  join (fmap k ma)
{-
  ma        :: m a            -- `m`-computation which produces `a`-type values
  k         ::   a -> m b     --  create new `m`-computation from an `a`-type value
  fmap k ma :: m    ( m b )   -- `m`-computation of `m`-computation of `b`-type values
  (m >>= k) :: m        b     -- `m`-computation which produces `b`-type values
-}

相反,可以通过bind定义join,join mma==join(fmap id mma)==mma>>=id,其中id ma=ma——对于给定的类型m,以更方便的为准。

对于monad,do表示法及其使用代码的等效绑定,

do { x <- mx ; y <- my ; return (f x y) }        --   x :: a   ,   mx :: m a
                                                 --   y :: b   ,   my :: m b
mx >>= (\x ->                                    -- nested
            my >>= (\y ->                        --  lambda
                         return (f x y) ))       --   functions

可以读为

首先“做”mx,当它完成时,将其“结果”作为x,让我用它“做”其他事情。

在给定的do块中,绑定箭头<-右侧的每个值对于某些类型a都是m a类型,在整个do块中都是相同的monad m。

返回x是一个中立的m计算,它只产生给定的纯值x,因此将任何m计算与返回绑定都不会改变该计算。


(1) 提升A2::适用m=>(a->b->c)->m a->m b->m c

(2) 纯::适用m=>a->m a

(3) 具有fmap::函数m=>(a->b)->m a->m b

还有等效的Monad方法,

liftM2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c
return :: Monad m =>  a            -> m a
liftM  :: Monad m => (a -> b)      -> m a -> m b

给定monad,其他定义可以如下

pure   a       = return a
fmap   f ma    = do { a <- ma ;            return (f a)   }
liftA2 f ma mb = do { a <- ma ; b <- mb  ; return (f a b) }
(ma >>= k)     = do { a <- ma ; b <- k a ; return  b      }