在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

monad是一个容器,但用于数据。一个特殊的容器。

所有容器都可以有开口、把手和喷口,但这些容器都保证有一定的开口、把手或喷口。

为什么?因为这些有保证的开口、把手和喷口对于以特定、常见的方式拾取和连接容器非常有用。

这使您可以选择不同的容器,而不必对它们了解太多。它还允许不同类型的容器轻松连接在一起。

其他回答

解释monad似乎就像解释控制流语句一样。想象一下,一个非程序员要求你解释它们?

你可以给他们一个涉及理论的解释——布尔逻辑、寄存器值、指针、堆栈和框架。但那太疯狂了。

你可以用语法来解释它们。基本上,C中的所有控制流语句都有大括号,您可以通过它们相对于括号的位置来区分条件和条件代码。这可能更疯狂。

或者,您也可以解释循环、if语句、例程、子例程以及可能的协例程。

Monad可以取代相当多的编程技术。语言中有一种特定的语法支持它们,还有一些关于它们的理论。

它们也是函数式程序员使用命令式代码而不承认它的一种方式,但这并不是他们唯一的用途。

我将尝试在Haskell的背景下解释Monad。

在函数式编程中,函数组合很重要。它允许我们的程序由小的、易于阅读的函数组成。

假设我们有两个函数:g::Int->String和f::String->Bool。

我们可以做(f.g)x,这与f(gx)相同,其中x是Int值。

当进行合成/将一个函数的结果应用到另一个函数时,使类型匹配是很重要的。在上述情况下,g返回的结果类型必须与f接受的类型相同。

但有时值是在上下文中的,这使得排列类型有点不容易。(在上下文中设置值非常有用。例如,Maybe Int类型表示可能不存在的Int值,IO String类型表示由于执行某些副作用而存在的String值。)

假设我们现在有g1::Int->Maybe String和f1::String->Maybe Bool。g1和f1分别与g和f非常相似。

我们不能做(f1.g1)x或f1(g1 x),其中x是Int值。g1返回的结果类型不是f1期望的类型。

我们可以用。运算符,但现在我们不能用..组合f1和g1。。问题是我们不能直接将上下文中的值传递给期望值不在上下文中的函数。

如果我们引入一个运算符来组合g1和f1,这样我们就可以写出(f1 operator g1)x,这不是很好吗?g1返回上下文中的值。该值将脱离上下文并应用于f1。是的,我们有这样一个操作员。它是<=<。

我们还有一个>>=运算符,它为我们做了完全相同的事情,尽管语法略有不同。

我们写:g1 x>>=f1。g1 x是Maybe Int值。>>=运算符帮助将Int值从“可能不存在”上下文中取出,并将其应用于f1。f1的结果是Maybe Bool,它将是整个>>=操作的结果。

最后,为什么Monad有用?因为Monad是定义>>=运算符的类型类,与定义==和/=运算符的Eq类型类非常相似。

总之,Monad类型类定义了>>=运算符,该运算符允许我们将上下文中的值(我们称为这些monadic值)传递给不需要上下文中值的函数。将考虑上下文。

如果这里需要记住一点,那就是Monads允许在上下文中包含值的函数组合。

Monad用于控制流,就像抽象数据类型用于数据一样。

换句话说,许多开发人员对集合、列表、字典(或哈希、或地图)和树的概念很熟悉。在这些数据类型中有许多特殊情况(例如InsertionOrderPreservingIdentityHashMap)。

然而,当面对程序“流”时,许多开发人员还没有接触到比if、switch/case、do、while、goto(grr)和(可能)闭包更多的构造。

因此,monad只是一个控制流构造。替代monad的更好短语是“控制类型”。

因此,monad具有用于控制逻辑、语句或函数的槽——数据结构中的等价物是,某些数据结构允许您添加数据,并删除数据。

例如,“if”monad:

if( clause ) then block

最简单的是有两个槽:一个子句和一个块。if monad通常用于评估子句的结果,如果不是false,则评估块。许多开发人员在学习“如果”时并没有接触到monad,而且编写有效的逻辑并不需要理解monad。

monad可能会变得更复杂,就像数据结构可能变得更复杂一样,但monad有很多大类可能具有相似的语义,但实现和语法不同。

当然,数据结构可以在单子上迭代或遍历,也可以以同样的方式进行评估。

编译器可能支持也可能不支持用户定义的monad。哈斯克尔当然知道。Ioke有一些类似的功能,尽管语言中没有使用monad一词。

世界需要的是另一篇monad博客文章,但我认为这对识别野外现存的monad很有用。

单子是分形

上面是一个叫做Sierpinski三角形的分形,这是我唯一记得画的分形。分形是与上述三角形相似的自相似结构,其中部分与整体相似(在这种情况下,正好是母三角形比例的一半)。单子是分形。给定一个一元数据结构,它的值可以组合成数据结构的另一个值。这就是为什么它对编程有用,这也是为什么它在许多情况下都会出现。

http://mikehadlow.blogspot.com/2011/02/monads-in-c-8-video-of-my-ddd9-monad.html

这是你要找的视频。

用C#演示组合和对齐类型的问题,然后用C#正确实现它们。最后,他展示了F#和Haskell中相同的C#代码的外观。