在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
当前回答
monad是一个容器,但用于数据。一个特殊的容器。
所有容器都可以有开口、把手和喷口,但这些容器都保证有一定的开口、把手或喷口。
为什么?因为这些有保证的开口、把手和喷口对于以特定、常见的方式拾取和连接容器非常有用。
这使您可以选择不同的容器,而不必对它们了解太多。它还允许不同类型的容器轻松连接在一起。
其他回答
根据我们所谈论的monad,“什么是monad”这个问题是错误的:
对“什么是单单体?”这个问题的简短回答是,它是内函子范畴中的单单体,或者它是一种通用数据类型,配备了满足某些定律的两个运算。这是正确的,但它并没有揭示一个重要的大局。这是因为问题是错误的。在这篇论文中,我们的目标是回答正确的问题,即“当作者谈论单子时,他们真正说的是什么?”
虽然这篇论文没有直接回答什么是单子,但它有助于理解不同背景的人谈论单子时的含义以及原因。
如果你要求对如此抽象的东西做出简洁、实用的解释,那么你只能希望得到一个抽象的答案:
a -> b
是表示从as到bs的计算的一种方式。您可以将计算链接起来,也可以将它们组合在一起:
(b -> c) -> (a -> b) -> (a -> c)
更复杂的计算需要更复杂的类型,例如:
a -> f b
是从as到bs到fs的计算类型。您还可以编写它们:
(b -> f c) -> (a -> f b) -> (a -> f c)
事实证明,这种模式无处不在,并且与上面的第一个组合具有相同的财产(结合性、右-和左-同一性)。
人们必须给这个模式起一个名字,但如果知道第一个组合被正式描述为半群体,这会有帮助吗?
“单子和圆括号一样有趣和重要”(奥列格·基斯廖夫)
Monad是一种带有特殊机器的盒子,它允许你从两个嵌套的盒子中制作一个普通的盒子,但仍然保持两个盒子的一些形状。
具体来说,它允许您执行连接,类型为Monad m=>m(m a)->m a。
它还需要一个返回操作,它只包装一个值。return::Monad m=>a->m a你也可以说joinunboxes和return wrappes,但join不是Monad m=>m a->a类型的(它不会打开所有Monad,而是打开Monad,Monad在其中)
所以它取一个Monad盒子(Monad m=>,m),里面有一个盒子((m a)),然后生成一个普通盒子(m a。
然而,Monad通常用于(>>=)(口语“bind”)运算符,它本质上只是一个fmap和一个接一个的join。具体而言,
x >>= f = join (fmap f x)
(>>=) :: Monad m => (a -> m b) -> m a -> m b
请注意,函数出现在第二个参数中,而不是fmap。
此外,join=(>>=id)。
为什么这有用?本质上,它允许您在某种框架(Monad)中工作时制作将动作串在一起的程序。
Haskell中Monad的最突出用途是IO Monad。现在,IO是对Haskell中的Action进行分类的类型。在这里,Monad系统是唯一的保存方式(华丽的词):
参考透明度懒惰纯洁
本质上,像getLine::IOString这样的IO操作不能被String替换,因为它总是具有不同的类型。把IO想象成一种神奇的盒子,可以把东西传送给你。然而,仍然只是说getLine::IOString和所有函数都接受IOa会导致混乱,因为可能不需要这些函数。const“üp§”getLine会做什么?(const丢弃第二个参数。const a b=a。)getLine不需要求值,但应该执行IO!这使得行为相当不可预测,也使得类型系统不那么“纯粹”,因为所有函数都将采用a和IOa值。
输入IO Monad。
要将动作串在一起,只需展平嵌套的动作。要将函数应用于IO操作的输出,IO a类型中的a,只需使用(>>=)。
例如,输出输入的行(输出行是一个生成IO操作的函数,匹配右参数>>=):
getLine >>= putStrLn :: IO ()
-- putStrLn :: String -> IO ()
这可以用do环境更直观地写出来:
do line <- getLine
putStrLn line
本质上,这样的do块:
do x <- a
y <- b
z <- f x y
w <- g z
h x
k <- h z
l k w
…转化为:
a >>= \x ->
b >>= \y ->
f x y >>= \z ->
g z >>= \w ->
h x >>= \_ ->
h z >>= \k ->
l k w
还有m>>=\_->f的>>运算符(当框中的值不需要在框中创建新框时)也可以写成a>>b=a>>=constb(consta b=a)
此外,返回运算符是根据IO直觉建模的-它返回一个具有最小上下文的值,在这种情况下没有IO。由于IO a中的a表示返回的类型,这类似于命令式编程语言中的return(a),但它不会停止操作链!f>>=return>>=g与f>>=g相同。仅当您返回的术语在链中较早创建时才有用-请参见上文。
当然,还有其他Monad,否则它不会被称为Monad,它会被称为“IO控制”之类的东西。
例如,List Monad(Monad[])通过串联变平-使(>>=)运算符对列表的所有元素执行函数。这可以被视为“不确定性”,其中列表是许多可能的值,而Monad框架正在进行所有可能的组合。
例如(GHCi):
Prelude> [1, 2, 3] >>= replicate 3 -- Simple binding
[1, 1, 1, 2, 2, 2, 3, 3, 3]
Prelude> concat (map (replicate 3) [1, 2, 3]) -- Same operation, more explicit
[1, 1, 1, 2, 2, 2, 3, 3, 3]
Prelude> [1, 2, 3] >> "uq"
"uququq"
Prelude> return 2 :: [Int]
[2]
Prelude> join [[1, 2], [3, 4]]
[1, 2, 3, 4]
因为:
join a = concat a
a >>= f = join (fmap f a)
return a = [a] -- or "= (:[])"
如果出现这种情况,“也许莫纳德”只会将所有结果作废为“无”。也就是说,绑定自动检查函数(a>>=f)是否返回或值(a>>>=f)是否为Nothing,然后也返回Nothing。
join Nothing = Nothing
join (Just Nothing) = Nothing
join (Just x) = x
a >>= f = join (fmap f a)
或者更明确地说:
Nothing >>= _ = Nothing
(Just x) >>= f = f x
State Monad用于同时修改某些共享状态-s->(a,s)的函数,因此>>=的参数为:a->s->(a,s)。这个名称有点用词不当,因为State实际上是用于状态修改功能,而不是用于状态——状态本身确实没有有趣的财产,它只是被改变了。
例如:
pop :: [a] -> (a , [a])
pop (h:t) = (h, t)
sPop = state pop -- The module for State exports no State constructor,
-- only a state function
push :: a -> [a] -> ((), [a])
push x l = ((), x : l)
sPush = state push
swap = do a <- sPop
b <- sPop
sPush a
sPush b
get2 = do a <- sPop
b <- sPop
return (a, b)
getswapped = do swap
get2
那么:
Main*> runState swap [1, 2, 3]
((), [2, 1, 3])
Main*> runState get2 [1, 2, 3]
((1, 2), [1, 2, 3]
Main*> runState (swap >> get2) [1, 2, 3]
((2, 1), [2, 1, 3])
Main*> runState getswapped [1, 2, 3]
((2, 1), [2, 1, 3])
也:
Prelude> runState (return 0) 1
(0, 1)
数学思维
简而言之:用于组合计算的代数结构。
返回数据:创建一个只需在monad世界中生成数据的计算。
(return data)>>=(return func):第二个参数接受第一个参数作为数据生成器,并创建连接它们的新计算。
您可以认为(>>=)和return本身不会进行任何计算。他们只是简单地组合和创建计算。
当且仅当main触发时,任何monad计算都将被计算。
世界需要的是另一篇monad博客文章,但我认为这对识别野外现存的monad很有用。
单子是分形
上面是一个叫做Sierpinski三角形的分形,这是我唯一记得画的分形。分形是与上述三角形相似的自相似结构,其中部分与整体相似(在这种情况下,正好是母三角形比例的一半)。单子是分形。给定一个一元数据结构,它的值可以组合成数据结构的另一个值。这就是为什么它对编程有用,这也是为什么它在许多情况下都会出现。