在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

对于来自命令式背景(c#)的人,

考虑以下代码

bool ReturnTrueorFalse(SomeObject input)
{
    if(input.Property1 is invalid)
    {
        return false;
    }

    if(input.Property2 is invalid)
    {
        return false;
    }

    DoSomething();
    return true;
}

您会看到很多这样的代码,甚至不会看到早期返回,但所有检查都是嵌套完成的。现在,Monad是一种模式,它可以像下面一样被压平

Monad<bool> ReturnTrueorFalse(SomeObject input) =>
    from isProperty1Valid in input.Property1
    from isProperty2Valid in input.Property2
    select Monad.Create(isProperty1Valid && isProperty2Valid);

这里有几点需要注意。首先,更改函数的返回值。其次,输入的两个财产都必须是Monad。接下来,Monad应该实现SelectMany(LINQ的展平运算符)。由于SelectMany是为该类型实现的,因此可以使用查询语法编写语句

那幺,什么是莫纳德?它是一种以可组合方式对返回相同类型的表达式进行扁平化的结构。这在函数式编程中特别有用,因为大多数函数式应用程序倾向于将状态和IO保持在应用程序的边缘层(例如:控制器),并在整个调用堆栈中返回基于Monad的返回值,直到需要解包该值。当我第一次看到这张照片时,我最大的优点是它很容易在眼睛上看到,也很有陈腔滥调。

每个c#(现在几乎每个人)开发人员都能立即识别的Monad的最佳示例是async/await。在.Net4.5之前,我们必须使用ContinueWith编写基于任务的语句来处理回调,在async/await之后,我们开始使用同步语法来处理异步语法。这是可能的,因为Task是一个“monad”。

关于OOP开发人员的详细说明,请参阅本文,这是一个简单的实现和语言文本,其中包含许多很棒的Monad和大量关于函数式编程的信息

其他回答

遵循您简短、简洁、实用的指示:

理解monad最简单的方法是在上下文中应用/组合函数。假设你有两个计算,它们都可以看作是两个数学函数f和g。

f取一个String并生成另一个String(取前两个字母)g获取一个String并生成另一个String(大写转换)

因此,在任何语言中,“取前两个字母并将其转换为大写”的转换都会写成g(f(“某个字符串”))。因此,在纯完美函数的世界中,合成只是:先做一件事,然后再做另一件事。

但假设我们生活在一个功能可能失败的世界中。例如:输入字符串可能有一个字符长,因此f将失败。所以在这种情况下

f获取一个String并生成一个String或Nothing。g仅在f未失败时生成字符串。否则,将不生成任何内容

所以现在,g(f(“somestring”))需要一些额外的检查:“计算f,如果它失败,那么g应该返回Nothing,否则计算g”

此思想可应用于任何参数化类型,如下所示:

让Context[Sometype]是Context中Sometype的计算。考虑功能

f: :AnyType->上下文[Sometype]g: :某些类型->上下文[AnyOtherType]

合成g(f())应该读作“compute f。在这个上下文中,做一些额外的计算,然后计算g,如果它在上下文中有意义”

公主对F#计算表达式的解释帮助了我,尽管我仍然不能说我真的理解了。

编辑:这个系列-用javascript解释monad-对我来说是一个“打破平衡”的系列。

http://blog.jcoglan.com/2011/03/05/translation-from-haskell-to-javascript-of-selected-portions-of-the-best-introduction-to-monads-ive-ever-read/http://blog.jcoglan.com/2011/03/06/monad-syntax-for-javascript/http://blog.jcoglan.com/2011/03/11/promises-are-the-monad-of-asynchronous-programming/

我认为理解单子是一件让你毛骨悚然的事。从这个意义上说,尽可能多地阅读“教程”是一个好主意,但通常奇怪的东西(不熟悉的语言或语法)会让你的大脑无法专注于基本内容。

有些事情我很难理解:

基于规则的解释对我来说从未奏效,因为大多数实际示例实际上需要的不仅仅是返回/绑定。此外,称之为规则也无济于事。这更像是“有些东西有共同点,我们把它们称为‘单子’,把共同点称为‘规则’”。Return(a->M<a>)和Bind(M<a>->(a->M<b>)->M<b>)很好,但我永远无法理解Bind如何从M<a>中提取a,以便将其传递给a->M<b>。我不认为我在任何地方读过(也许这对其他人来说都很明显),Return(M<a>->a)的反面必须存在于monad内部,它只是不需要暴露。

如果我理解正确的话,IEnumerable是从monad派生出来的。我想知道,对于我们这些来自C#世界的人来说,这可能是一个有趣的视角吗?

值得一提的是,这里有一些帮助我的教程链接(不,我还不知道单子是什么)。

http://osteele.com/archives/2007/12/overloading-semicolonhttp://spbhug.folding-maps.org/wiki/MonadsEnhttp://www.loria.fr/~kow/monads/

实际上,monad是函数组合运算符的一种自定义实现,它考虑了副作用以及不兼容的输入和返回值(用于链接)。

Monad是一个可应用的(即,你可以将二进制(因此,“n元”)函数提升到(1),并将纯值注入(2))Functor(即,可以映射到(3)的函数,即提升一元函数到(3”),它还具有展平嵌套数据类型的能力(三个概念中的每一个都遵循其相应的一组规则)。在Haskell中,这种扁平化操作称为join。

此“联接”操作的常规(通用、参数化)类型为:

join  ::  Monad m  =>  m (m a)  ->  m a

对于任何monad m(注意,类型中的所有ms都是相同的!)。

特定的m monad定义了其特定版本的join,该版本适用于由类型m A的monadic值“携带”的任何值类型A。某些特定类型包括:

join  ::  [[a]]           -> [a]         -- for lists, or nondeterministic values
join  ::  Maybe (Maybe a) -> Maybe a     -- for Maybe, or optional values
join  ::  IO    (IO    a) -> IO    a     -- for I/O-produced values

连接操作将产生a型值的m计算的m计算转换为a型值组合的m计算。这允许将计算步骤组合成一个更大的计算。

结合“bind”(>>=)运算符的计算步骤简单地使用fmap和join,即。

(ma >>= k)  ==  join (fmap k ma)
{-
  ma        :: m a            -- `m`-computation which produces `a`-type values
  k         ::   a -> m b     --  create new `m`-computation from an `a`-type value
  fmap k ma :: m    ( m b )   -- `m`-computation of `m`-computation of `b`-type values
  (m >>= k) :: m        b     -- `m`-computation which produces `b`-type values
-}

相反,可以通过bind定义join,join mma==join(fmap id mma)==mma>>=id,其中id ma=ma——对于给定的类型m,以更方便的为准。

对于monad,do表示法及其使用代码的等效绑定,

do { x <- mx ; y <- my ; return (f x y) }        --   x :: a   ,   mx :: m a
                                                 --   y :: b   ,   my :: m b
mx >>= (\x ->                                    -- nested
            my >>= (\y ->                        --  lambda
                         return (f x y) ))       --   functions

可以读为

首先“做”mx,当它完成时,将其“结果”作为x,让我用它“做”其他事情。

在给定的do块中,绑定箭头<-右侧的每个值对于某些类型a都是m a类型,在整个do块中都是相同的monad m。

返回x是一个中立的m计算,它只产生给定的纯值x,因此将任何m计算与返回绑定都不会改变该计算。


(1) 提升A2::适用m=>(a->b->c)->m a->m b->m c

(2) 纯::适用m=>a->m a

(3) 具有fmap::函数m=>(a->b)->m a->m b

还有等效的Monad方法,

liftM2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c
return :: Monad m =>  a            -> m a
liftM  :: Monad m => (a -> b)      -> m a -> m b

给定monad,其他定义可以如下

pure   a       = return a
fmap   f ma    = do { a <- ma ;            return (f a)   }
liftA2 f ma mb = do { a <- ma ; b <- mb  ; return (f a b) }
(ma >>= k)     = do { a <- ma ; b <- k a ; return  b      }