在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
当前回答
对于来自命令式背景(c#)的人,
考虑以下代码
bool ReturnTrueorFalse(SomeObject input)
{
if(input.Property1 is invalid)
{
return false;
}
if(input.Property2 is invalid)
{
return false;
}
DoSomething();
return true;
}
您会看到很多这样的代码,甚至不会看到早期返回,但所有检查都是嵌套完成的。现在,Monad是一种模式,它可以像下面一样被压平
Monad<bool> ReturnTrueorFalse(SomeObject input) =>
from isProperty1Valid in input.Property1
from isProperty2Valid in input.Property2
select Monad.Create(isProperty1Valid && isProperty2Valid);
这里有几点需要注意。首先,更改函数的返回值。其次,输入的两个财产都必须是Monad。接下来,Monad应该实现SelectMany(LINQ的展平运算符)。由于SelectMany是为该类型实现的,因此可以使用查询语法编写语句
那幺,什么是莫纳德?它是一种以可组合方式对返回相同类型的表达式进行扁平化的结构。这在函数式编程中特别有用,因为大多数函数式应用程序倾向于将状态和IO保持在应用程序的边缘层(例如:控制器),并在整个调用堆栈中返回基于Monad的返回值,直到需要解包该值。当我第一次看到这张照片时,我最大的优点是它很容易在眼睛上看到,也很有陈腔滥调。
每个c#(现在几乎每个人)开发人员都能立即识别的Monad的最佳示例是async/await。在.Net4.5之前,我们必须使用ContinueWith编写基于任务的语句来处理回调,在async/await之后,我们开始使用同步语法来处理异步语法。这是可能的,因为Task是一个“monad”。
关于OOP开发人员的详细说明,请参阅本文,这是一个简单的实现和语言文本,其中包含许多很棒的Monad和大量关于函数式编程的信息
其他回答
正如丹尼尔·斯皮瓦克(Daniel Spiewak)所解释的,修道院不是隐喻,而是从一种共同模式中产生的一种实用的抽象。
另一种尝试是解释monad,只使用Python列表和map函数。我完全接受这不是一个完整的解释,但我希望它能触及核心概念。
我从Monads上的funfunfunction视频和Learn You A Haskell章节“为了几个Monads更多”中得到了这一点的基础。我强烈推荐观看funfunfunction视频。
最简单的是,Monad是具有map和flatMap函数(在Haskell中绑定)的对象。有一些额外的必需财产,但这些是核心属性。
flatMap“展平”map的输出,对于列表,这只是连接列表的值,例如。
concat([[1], [4], [9]]) = [1, 4, 9]
因此,在Python中,我们基本上可以通过以下两个函数实现Monad:
def flatMap(func, lst):
return concat(map(func, lst))
def concat(lst):
return sum(lst, [])
func是任何接受值并返回列表的函数。
lambda x: [x*x]
解释
为了清楚起见,我通过一个简单的函数在Python中创建了concat函数,该函数将列表相加,即[]+[1]+[4]+[9]=[1,4,9](Haskell有一个原生的concat方法)。
我假设你知道地图功能是什么,例如:
>>> list(map(lambda x: [x*x], [1,2,3]))
[[1], [4], [9]]
展平是Monad的关键概念,对于每个作为Monad的对象,这种展平允许您获得Monad中包裹的值。
现在我们可以呼叫:
>>> flatMap(lambda x: [x*x], [1,2,3])
[1, 4, 9]
这个lambda取一个值x并将其放入一个列表中。monad适用于从值到monad类型的任何函数,所以在本例中是列表。
这是你的monad定义。
我认为为什么它们有用的问题已经在其他问题中得到了回答。
更多说明
其他不是列表的例子有JavaScript Promise,它有then方法,JavaScript Streams有flatMap方法。
因此Promise和Streams使用了一个稍微不同的函数,它将Stream或Promise展平,并从内部返回值。
Haskell列表monad具有以下定义:
instance Monad [] where
return x = [x]
xs >>= f = concat (map f xs)
fail _ = []
即有三个函数return(不要与大多数其他语言中的return混淆)、>>=(flatMap)和fail。
希望您能看到以下两者之间的相似之处:
xs >>= f = concat (map f xs)
and:
def flatMap(f, xs):
return concat(map(f, xs))
(另请参见“什么是monad?”中的答案)
蒙纳斯的一个很好的动机是西格菲(丹·皮波尼)的《你本可以发明蒙纳斯!(也许你已经有了)。还有很多其他monad教程,其中许多都试图使用各种类比以“简单的术语”来解释monad:这就是monad教程谬论;避开它们。
正如MacIver博士在《告诉我们为什么你的语言很糟糕》中所说:所以,我讨厌Haskell的事情:让我们从显而易见的开始。Monad教程。不,不是单子。特别是教程。他们没完没了,夸夸其谈,亲爱的上帝,他们太乏味了。此外,我从未见过任何令人信服的证据表明它们确实有帮助。阅读类定义,编写一些代码,忘掉这个可怕的名字。
你说你懂“也许莫纳德”吗?很好,你在路上了。只要开始使用其他monad,迟早你会了解monad的一般含义。
(如果你以数学为导向,你可能想忽略几十个教程,学习定义,或遵循类别理论的讲座:)定义的主要部分是Monad M包含一个“类型构造器”,为每个现有类型“T”定义一个新类型“M T”,以及在“常规”类型和“M”类型之间来回移动的一些方式。]
同样,令人惊讶的是,对monad最好的介绍之一实际上是介绍monad的早期学术论文之一,Philip Wadler的Monad for functional programming。它实际上有一些实用的、非平凡的激励性例子,与许多人工教程不同。
我将尝试在Haskell的背景下解释Monad。
在函数式编程中,函数组合很重要。它允许我们的程序由小的、易于阅读的函数组成。
假设我们有两个函数:g::Int->String和f::String->Bool。
我们可以做(f.g)x,这与f(gx)相同,其中x是Int值。
当进行合成/将一个函数的结果应用到另一个函数时,使类型匹配是很重要的。在上述情况下,g返回的结果类型必须与f接受的类型相同。
但有时值是在上下文中的,这使得排列类型有点不容易。(在上下文中设置值非常有用。例如,Maybe Int类型表示可能不存在的Int值,IO String类型表示由于执行某些副作用而存在的String值。)
假设我们现在有g1::Int->Maybe String和f1::String->Maybe Bool。g1和f1分别与g和f非常相似。
我们不能做(f1.g1)x或f1(g1 x),其中x是Int值。g1返回的结果类型不是f1期望的类型。
我们可以用。运算符,但现在我们不能用..组合f1和g1。。问题是我们不能直接将上下文中的值传递给期望值不在上下文中的函数。
如果我们引入一个运算符来组合g1和f1,这样我们就可以写出(f1 operator g1)x,这不是很好吗?g1返回上下文中的值。该值将脱离上下文并应用于f1。是的,我们有这样一个操作员。它是<=<。
我们还有一个>>=运算符,它为我们做了完全相同的事情,尽管语法略有不同。
我们写:g1 x>>=f1。g1 x是Maybe Int值。>>=运算符帮助将Int值从“可能不存在”上下文中取出,并将其应用于f1。f1的结果是Maybe Bool,它将是整个>>=操作的结果。
最后,为什么Monad有用?因为Monad是定义>>=运算符的类型类,与定义==和/=运算符的Eq类型类非常相似。
总之,Monad类型类定义了>>=运算符,该运算符允许我们将上下文中的值(我们称为这些monadic值)传递给不需要上下文中值的函数。将考虑上下文。
如果这里需要记住一点,那就是Monads允许在上下文中包含值的函数组合。
tl;博士
{-# LANGUAGE InstanceSigs #-}
newtype Id t = Id t
instance Monad Id where
return :: t -> Id t
return = Id
(=<<) :: (a -> Id b) -> Id a -> Id b
f =<< (Id x) = f x
开场白
应用程序运算符$of函数
forall a b. a -> b
是规范定义的
($) :: (a -> b) -> a -> b
f $ x = f x
infixr 0 $
根据Haskell基函数应用f x(infixl 10)。
作文定义为$as
(.) :: (b -> c) -> (a -> b) -> (a -> c)
f . g = \ x -> f $ g x
infixr 9 .
并且满足所有f g h的等价性。
f . id = f :: c -> d Right identity
id . g = g :: b -> c Left identity
(f . g) . h = f . (g . h) :: a -> d Associativity
.是关联的,id是它的右标识和左标识。
克莱斯利三人组
在编程中,monad是带有monad类型类实例的函子类型构造函数。定义和实现有几个等价的变体,每个变体对monad抽象的直觉略有不同。
函子是带有函子类型类实例的*->*类型的类型构造函数f。
{-# LANGUAGE KindSignatures #-}
class Functor (f :: * -> *) where
map :: (a -> b) -> (f a -> f b)
除了遵循静态强制类型协议之外,函子类型类的实例必须遵守所有f g的代数函子定律。
map id = id :: f t -> f t Identity
map f . map g = map (f . g) :: f a -> f c Composition / short cut fusion
函数计算具有以下类型
forall f t. Functor f => f t
计算c r包含上下文c中的结果r。
一元一元函数或Kleisli箭头的类型为
forall m a b. Functor m => a -> m b
Kleisi箭头是接受一个参数a并返回一元计算m b的函数。
Monads是用Kleisli三重函数定义的
(m, return, (=<<))
实现为类型类
class Functor m => Monad m where
return :: t -> m t
(=<<) :: (a -> m b) -> m a -> m b
infixr 1 =<<
Kleisli标识返回是一个Kleisli箭头,它将值t提升为单元上下文m。
Kleisli组成<=<根据扩展定义为
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)
f <=< g = \ x -> f =<< g x
infixr 1 <=<
<=<组成两个Kleisli箭头,将左箭头应用于右箭头应用的结果。
monad类型类的实例必须遵守monad定律,这在Kleisli组合中最为优雅地表述为:forall f g h。
f <=< return = f :: c -> m d Right identity
return <=< g = g :: b -> m c Left identity
(f <=< g) <=< h = f <=< (g <=< h) :: a -> m d Associativity
<=<是关联的,返回是它的右标识和左标识。
身份
标识类型
type Id t = t
是类型上的标识函数
Id :: * -> *
被解释为函子,
return :: t -> Id t
= id :: t -> t
(=<<) :: (a -> Id b) -> Id a -> Id b
= ($) :: (a -> b) -> a -> b
(<=<) :: (b -> Id c) -> (a -> Id b) -> (a -> Id c)
= (.) :: (b -> c) -> (a -> b) -> (a -> c)
在规范的Haskell中,定义了身份monad
newtype Id t = Id t
instance Functor Id where
map :: (a -> b) -> Id a -> Id b
map f (Id x) = Id (f x)
instance Monad Id where
return :: t -> Id t
return = Id
(=<<) :: (a -> Id b) -> Id a -> Id b
f =<< (Id x) = f x
选项
选项类型
data Maybe t = Nothing | Just t
编码计算可能t不一定产生结果t,计算可能“失败”。选项monad已定义
instance Functor Maybe where
map :: (a -> b) -> (Maybe a -> Maybe b)
map f (Just x) = Just (f x)
map _ Nothing = Nothing
instance Monad Maybe where
return :: t -> Maybe t
return = Just
(=<<) :: (a -> Maybe b) -> Maybe a -> Maybe b
f =<< (Just x) = f x
_ =<< Nothing = Nothing
a->Maybe b仅在Maybe a产生结果时应用于结果。
newtype Nat = Nat Int
自然数可以编码为大于或等于零的整数。
toNat :: Int -> Maybe Nat
toNat i | i >= 0 = Just (Nat i)
| otherwise = Nothing
自然数在减法下不是封闭的。
(-?) :: Nat -> Nat -> Maybe Nat
(Nat n) -? (Nat m) = toNat (n - m)
infixl 6 -?
选项monad涵盖了异常处理的基本形式。
(-? 20) <=< toNat :: Int -> Maybe Nat
List
列表monad,覆盖列表类型
data [] t = [] | t : [t]
infixr 5 :
及其加法幺半群运算“append”
(++) :: [t] -> [t] -> [t]
(x : xs) ++ ys = x : xs ++ ys
[] ++ ys = ys
infixr 5 ++
编码非线性计算[t],产生自然量0,1。。。结果t。
instance Functor [] where
map :: (a -> b) -> ([a] -> [b])
map f (x : xs) = f x : map f xs
map _ [] = []
instance Monad [] where
return :: t -> [t]
return = (: [])
(=<<) :: (a -> [b]) -> [a] -> [b]
f =<< (x : xs) = f x ++ (f =<< xs)
_ =<< [] = []
Extension=<<将从Kleisli箭头a->[b]的应用f x到[a]的元素的所有列表[b]连接到一个结果列表[b]。
设正整数n的正除数为
divisors :: Integral t => t -> [t]
divisors n = filter (`divides` n) [2 .. n - 1]
divides :: Integral t => t -> t -> Bool
(`divides` n) = (== 0) . (n `rem`)
then
forall n. let { f = f <=< divisors } in f n = []
在定义monad类型类时,Haskell标准使用其flip,即绑定运算符>>=,而不是extension=<<。
class Applicative m => Monad m where
(>>=) :: forall a b. m a -> (a -> m b) -> m b
(>>) :: forall a b. m a -> m b -> m b
m >> k = m >>= \ _ -> k
{-# INLINE (>>) #-}
return :: a -> m a
return = pure
为了简单起见,本解释使用了类型类层次结构
class Functor f
class Functor m => Monad m
在Haskell中,当前的标准层次结构是
class Functor f
class Functor p => Applicative p
class Applicative m => Monad m
因为不仅每个单子都是函子,而且每个应用格也是函子,每个单子也是应用格。
使用列表monad,命令式伪代码
for a in (1, ..., 10)
for b in (1, ..., 10)
p <- a * b
if even(p)
yield p
大致翻译为do块,
do a <- [1 .. 10]
b <- [1 .. 10]
let p = a * b
guard (even p)
return p
等效的monad理解,
[ p | a <- [1 .. 10], b <- [1 .. 10], let p = a * b, even p ]
和表达式
[1 .. 10] >>= (\ a ->
[1 .. 10] >>= (\ b ->
let p = a * b in
guard (even p) >> -- [ () | even p ] >>
return p
)
)
Do符号和monad理解是嵌套绑定表达式的语法糖。绑定运算符用于一元结果的本地名称绑定。
let x = v in e = (\ x -> e) $ v = v & (\ x -> e)
do { r <- m; c } = (\ r -> c) =<< m = m >>= (\ r -> c)
哪里
(&) :: a -> (a -> b) -> b
(&) = flip ($)
infixl 0 &
定义了防护功能
guard :: Additive m => Bool -> m ()
guard True = return ()
guard False = fail
其中单位类型或“空元组”
data () = ()
支持选择和失败的加法单子可以通过使用类型类抽象
class Monad m => Additive m where
fail :: m t
(<|>) :: m t -> m t -> m t
infixl 3 <|>
instance Additive Maybe where
fail = Nothing
Nothing <|> m = m
m <|> _ = m
instance Additive [] where
fail = []
(<|>) = (++)
其中fail和<|>形成所有k l m的幺半群。
k <|> fail = k
fail <|> l = l
(k <|> l) <|> m = k <|> (l <|> m)
失败的是吸收/消灭零元素的加法单体
_ =<< fail = fail
如果在
guard (even p) >> return p
即使p为真,则保护产生[()],并且根据>>的定义,产生局部常数函数
\ _ -> return p
应用于结果()。如果为false,则保护生成列表monad的fail([]),这不会产生要应用>>的Kleisli箭头的结果,因此跳过此p。
状态
不光彩的是,monad用于编码有状态计算。
状态处理器是一种功能
forall st t. st -> (t, st)
转换状态st并产生结果t。状态st可以是任何东西。没有,标志,计数,数组,句柄,机器,世界。
状态处理器的类型通常称为
type State st t = st -> (t, st)
状态处理器monad是kind*->*函子state st.Kleisli状态处理器mond的箭头是函数
forall st a b. a -> (State st) b
在规范的Haskell中,定义了状态处理器monad的惰性版本
newtype State st t = State { stateProc :: st -> (t, st) }
instance Functor (State st) where
map :: (a -> b) -> ((State st) a -> (State st) b)
map f (State p) = State $ \ s0 -> let (x, s1) = p s0
in (f x, s1)
instance Monad (State st) where
return :: t -> (State st) t
return x = State $ \ s -> (x, s)
(=<<) :: (a -> (State st) b) -> (State st) a -> (State st) b
f =<< (State p) = State $ \ s0 -> let (x, s1) = p s0
in stateProc (f x) s1
状态处理器通过提供初始状态来运行:
run :: State st t -> st -> (t, st)
run = stateProc
eval :: State st t -> st -> t
eval = fst . run
exec :: State st t -> st -> st
exec = snd . run
状态访问由原语get和put提供,它们是对有状态monad的抽象方法:
{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies #-}
class Monad m => Stateful m st | m -> st where
get :: m st
put :: st -> m ()
m->st声明状态类型st对monad m的函数依赖性;例如,状态t将确定状态类型为t唯一。
instance Stateful (State st) st where
get :: State st st
get = State $ \ s -> (s, s)
put :: st -> State st ()
put s = State $ \ _ -> ((), s)
单位类型类似于C中的空隙。
modify :: Stateful m st => (st -> st) -> m ()
modify f = do
s <- get
put (f s)
gets :: Stateful m st => (st -> t) -> m t
gets f = do
s <- get
return (f s)
gets通常与记录字段访问器一起使用。
状态monad等价于变量线程
let s0 = 34
s1 = (+ 1) s0
n = (* 12) s1
s2 = (+ 7) s1
in (show n, s2)
其中s0::Int,是同样透明的,但更加优雅和实用
(flip run) 34
(do
modify (+ 1)
n <- gets (* 12)
modify (+ 7)
return (show n)
)
modify(+1)是一种类型为State Int()的计算,但其效果等同于return()。
(flip run) 34
(modify (+ 1) >>
gets (* 12) >>= (\ n ->
modify (+ 7) >>
return (show n)
)
)
结合性的单子定律可以用>>=forall m f g来表示。
(m >>= f) >>= g = m >>= (\ x -> f x >>= g)
or
do { do { do {
r1 <- do { x <- m; r0 <- m;
r0 <- m; = do { = r1 <- f r0;
f r0 r1 <- f x; g r1
}; g r1 }
g r1 }
} }
与面向表达式的编程(例如Rust)一样,块的最后一条语句表示其产量。绑定运算符有时被称为“可编程分号”。
对结构化命令式编程中的迭代控制结构原语进行单点仿真
for :: Monad m => (a -> m b) -> [a] -> m ()
for f = foldr ((>>) . f) (return ())
while :: Monad m => m Bool -> m t -> m ()
while c m = do
b <- c
if b then m >> while c m
else return ()
forever :: Monad m => m t
forever m = m >> forever m
输入/输出
data World
I/O世界状态处理器monad是纯Haskell和真实世界的协调,是功能外延和命令式操作语义的协调。与实际严格执行情况类似:
type IO t = World -> (t, World)
不纯洁的原语促进了交互
getChar :: IO Char
putChar :: Char -> IO ()
readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()
hSetBuffering :: Handle -> BufferMode -> IO ()
hTell :: Handle -> IO Integer
. . . . . .
使用IO原语的代码的杂质由类型系统永久协议化。因为纯净是可怕的,在IO中发生的一切,都留在IO中。
unsafePerformIO :: IO t -> t
或者,至少应该。
Haskell程序的类型签名
main :: IO ()
main = putStrLn "Hello, World!"
扩展到
World -> ((), World)
改变世界的函数。
后记
对象是Haskell类型,态射是Haskelr类型之间的函数的类别是,“快速和松散”,类别是Hask。
函子T是从范畴C到范畴D的映射;对于C中的每个对象,D中的一个对象
Tobj : Obj(C) -> Obj(D)
f :: * -> *
对于C中的每个态射,D中的一个态射
Tmor : HomC(X, Y) -> HomD(Tobj(X), Tobj(Y))
map :: (a -> b) -> (f a -> f b)
其中X,Y是C中的对象。HomC(X,Y)是C中所有态射X->Y的同态类。
Tmor Tobj
T(id) = id : T(X) -> T(X) Identity
T(f) . T(g) = T(f . g) : T(X) -> T(Z) Composition
范畴C的Kleisli范畴由Kleisli三元组给出
<T, eta, _*>
内函子的
T : C -> C
(f) 、同一态射eta(return)和扩展运算符*(=<<)。
Hask中的每个Kleisli态射
f : X -> T(Y)
f :: a -> m b
由扩展运算符
(_)* : Hom(X, T(Y)) -> Hom(T(X), T(Y))
(=<<) :: (a -> m b) -> (m a -> m b)
在Hask的Kleisli范畴中给出了一个态射
f* : T(X) -> T(Y)
(f =<<) :: m a -> m b
Kleisli范畴中的成分。T以扩展的形式给出
f .T g = f* . g : X -> T(Z)
f <=< g = (f =<<) . g :: a -> m c
并且满足范畴公理
eta .T g = g : Y -> T(Z) Left identity
return <=< g = g :: b -> m c
f .T eta = f : Z -> T(U) Right identity
f <=< return = f :: c -> m d
(f .T g) .T h = f .T (g .T h) : X -> T(U) Associativity
(f <=< g) <=< h = f <=< (g <=< h) :: a -> m d
应用等价变换
eta .T g = g
eta* . g = g By definition of .T
eta* . g = id . g forall f. id . f = f
eta* = id forall f g h. f . h = g . h ==> f = g
(f .T g) .T h = f .T (g .T h)
(f* . g)* . h = f* . (g* . h) By definition of .T
(f* . g)* . h = f* . g* . h . is associative
(f* . g)* = f* . g* forall f g h. f . h = g . h ==> f = g
在扩展方面是规范给出的
eta* = id : T(X) -> T(X) Left identity
(return =<<) = id :: m t -> m t
f* . eta = f : Z -> T(U) Right identity
(f =<<) . return = f :: c -> m d
(f* . g)* = f* . g* : T(X) -> T(Z) Associativity
(((f =<<) . g) =<<) = (f =<<) . (g =<<) :: m a -> m c
Monads也可以不使用Kleislian扩展来定义,而是在称为join的编程中使用自然转换mu来定义。一个单元是用μ来定义的,它是一个内函子的范畴C上的三元组
T : C -> C
f :: * -> *
和两种自然变形
eta : Id -> T
return :: t -> f t
mu : T . T -> T
join :: f (f t) -> f t
满足等效条件
mu . T(mu) = mu . mu : T . T . T -> T . T Associativity
join . map join = join . join :: f (f (f t)) -> f t
mu . T(eta) = mu . eta = id : T -> T Identity
join . map return = join . return = id :: f t -> f t
然后定义monad类型类
class Functor m => Monad m where
return :: t -> m t
join :: m (m t) -> m t
选项monad的规范mu实现:
instance Monad Maybe where
return = Just
join (Just m) = m
join Nothing = Nothing
concat函数
concat :: [[a]] -> [a]
concat (x : xs) = x ++ concat xs
concat [] = []
是列表monad的连接。
instance Monad [] where
return :: t -> [t]
return = (: [])
(=<<) :: (a -> [b]) -> ([a] -> [b])
(f =<<) = concat . map f
联接的实现可以使用等价项从扩展形式转换
mu = id* : T . T -> T
join = (id =<<) :: m (m t) -> m t
从mu到扩展形式的反向转换如下
f* = mu . T(f) : T(X) -> T(Y)
(f =<<) = join . map f :: m a -> m b
Philip Wadler:函数编程的MonadsSimon L Peyton Jones,Philip Wadler:强制函数式编程Jonathan M.D.Hill,Keith Clarke:范畴理论、范畴理论单子及其与函数编程的关系简介´Kleisli类别Eugenio Moggi:计算和单子的概念莫纳德不是什么
但为什么如此抽象的理论对编程有用呢?答案很简单:作为计算机科学家,我们重视抽象!当我们设计软件组件的接口时,我们希望它尽可能少地揭示实现。我们希望能够用许多替代方案来替代实现,许多其他“实例”都是相同的“概念”。当我们为许多程序库设计通用接口时,更重要的是我们选择的接口具有多种实现。我们非常重视monad概念的普遍性,这是因为范畴理论非常抽象,所以它的概念对编程非常有用。因此,我们在下面介绍的单子的推广也与范畴理论有着密切的联系,这一点不足为奇。但我们强调,我们的目的非常实用:它不是“实现范畴理论”,而是找到一种更通用的方法来构造组合子库。数学家已经为我们做了很多工作,这是我们的幸运!
从约翰·休斯的《概括单子到箭头》