在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
当前回答
Monad是一个可应用的(即,你可以将二进制(因此,“n元”)函数提升到(1),并将纯值注入(2))Functor(即,可以映射到(3)的函数,即提升一元函数到(3”),它还具有展平嵌套数据类型的能力(三个概念中的每一个都遵循其相应的一组规则)。在Haskell中,这种扁平化操作称为join。
此“联接”操作的常规(通用、参数化)类型为:
join :: Monad m => m (m a) -> m a
对于任何monad m(注意,类型中的所有ms都是相同的!)。
特定的m monad定义了其特定版本的join,该版本适用于由类型m A的monadic值“携带”的任何值类型A。某些特定类型包括:
join :: [[a]] -> [a] -- for lists, or nondeterministic values
join :: Maybe (Maybe a) -> Maybe a -- for Maybe, or optional values
join :: IO (IO a) -> IO a -- for I/O-produced values
连接操作将产生a型值的m计算的m计算转换为a型值组合的m计算。这允许将计算步骤组合成一个更大的计算。
结合“bind”(>>=)运算符的计算步骤简单地使用fmap和join,即。
(ma >>= k) == join (fmap k ma)
{-
ma :: m a -- `m`-computation which produces `a`-type values
k :: a -> m b -- create new `m`-computation from an `a`-type value
fmap k ma :: m ( m b ) -- `m`-computation of `m`-computation of `b`-type values
(m >>= k) :: m b -- `m`-computation which produces `b`-type values
-}
相反,可以通过bind定义join,join mma==join(fmap id mma)==mma>>=id,其中id ma=ma——对于给定的类型m,以更方便的为准。
对于monad,do表示法及其使用代码的等效绑定,
do { x <- mx ; y <- my ; return (f x y) } -- x :: a , mx :: m a
-- y :: b , my :: m b
mx >>= (\x -> -- nested
my >>= (\y -> -- lambda
return (f x y) )) -- functions
可以读为
首先“做”mx,当它完成时,将其“结果”作为x,让我用它“做”其他事情。
在给定的do块中,绑定箭头<-右侧的每个值对于某些类型a都是m a类型,在整个do块中都是相同的monad m。
返回x是一个中立的m计算,它只产生给定的纯值x,因此将任何m计算与返回绑定都不会改变该计算。
(1) 提升A2::适用m=>(a->b->c)->m a->m b->m c
(2) 纯::适用m=>a->m a
(3) 具有fmap::函数m=>(a->b)->m a->m b
还有等效的Monad方法,
liftM2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c
return :: Monad m => a -> m a
liftM :: Monad m => (a -> b) -> m a -> m b
给定monad,其他定义可以如下
pure a = return a
fmap f ma = do { a <- ma ; return (f a) }
liftA2 f ma mb = do { a <- ma ; b <- mb ; return (f a b) }
(ma >>= k) = do { a <- ma ; b <- k a ; return b }
其他回答
Monad是一种带有特殊机器的盒子,它允许你从两个嵌套的盒子中制作一个普通的盒子,但仍然保持两个盒子的一些形状。
具体来说,它允许您执行连接,类型为Monad m=>m(m a)->m a。
它还需要一个返回操作,它只包装一个值。return::Monad m=>a->m a你也可以说joinunboxes和return wrappes,但join不是Monad m=>m a->a类型的(它不会打开所有Monad,而是打开Monad,Monad在其中)
所以它取一个Monad盒子(Monad m=>,m),里面有一个盒子((m a)),然后生成一个普通盒子(m a。
然而,Monad通常用于(>>=)(口语“bind”)运算符,它本质上只是一个fmap和一个接一个的join。具体而言,
x >>= f = join (fmap f x)
(>>=) :: Monad m => (a -> m b) -> m a -> m b
请注意,函数出现在第二个参数中,而不是fmap。
此外,join=(>>=id)。
为什么这有用?本质上,它允许您在某种框架(Monad)中工作时制作将动作串在一起的程序。
Haskell中Monad的最突出用途是IO Monad。现在,IO是对Haskell中的Action进行分类的类型。在这里,Monad系统是唯一的保存方式(华丽的词):
参考透明度懒惰纯洁
本质上,像getLine::IOString这样的IO操作不能被String替换,因为它总是具有不同的类型。把IO想象成一种神奇的盒子,可以把东西传送给你。然而,仍然只是说getLine::IOString和所有函数都接受IOa会导致混乱,因为可能不需要这些函数。const“üp§”getLine会做什么?(const丢弃第二个参数。const a b=a。)getLine不需要求值,但应该执行IO!这使得行为相当不可预测,也使得类型系统不那么“纯粹”,因为所有函数都将采用a和IOa值。
输入IO Monad。
要将动作串在一起,只需展平嵌套的动作。要将函数应用于IO操作的输出,IO a类型中的a,只需使用(>>=)。
例如,输出输入的行(输出行是一个生成IO操作的函数,匹配右参数>>=):
getLine >>= putStrLn :: IO ()
-- putStrLn :: String -> IO ()
这可以用do环境更直观地写出来:
do line <- getLine
putStrLn line
本质上,这样的do块:
do x <- a
y <- b
z <- f x y
w <- g z
h x
k <- h z
l k w
…转化为:
a >>= \x ->
b >>= \y ->
f x y >>= \z ->
g z >>= \w ->
h x >>= \_ ->
h z >>= \k ->
l k w
还有m>>=\_->f的>>运算符(当框中的值不需要在框中创建新框时)也可以写成a>>b=a>>=constb(consta b=a)
此外,返回运算符是根据IO直觉建模的-它返回一个具有最小上下文的值,在这种情况下没有IO。由于IO a中的a表示返回的类型,这类似于命令式编程语言中的return(a),但它不会停止操作链!f>>=return>>=g与f>>=g相同。仅当您返回的术语在链中较早创建时才有用-请参见上文。
当然,还有其他Monad,否则它不会被称为Monad,它会被称为“IO控制”之类的东西。
例如,List Monad(Monad[])通过串联变平-使(>>=)运算符对列表的所有元素执行函数。这可以被视为“不确定性”,其中列表是许多可能的值,而Monad框架正在进行所有可能的组合。
例如(GHCi):
Prelude> [1, 2, 3] >>= replicate 3 -- Simple binding
[1, 1, 1, 2, 2, 2, 3, 3, 3]
Prelude> concat (map (replicate 3) [1, 2, 3]) -- Same operation, more explicit
[1, 1, 1, 2, 2, 2, 3, 3, 3]
Prelude> [1, 2, 3] >> "uq"
"uququq"
Prelude> return 2 :: [Int]
[2]
Prelude> join [[1, 2], [3, 4]]
[1, 2, 3, 4]
因为:
join a = concat a
a >>= f = join (fmap f a)
return a = [a] -- or "= (:[])"
如果出现这种情况,“也许莫纳德”只会将所有结果作废为“无”。也就是说,绑定自动检查函数(a>>=f)是否返回或值(a>>>=f)是否为Nothing,然后也返回Nothing。
join Nothing = Nothing
join (Just Nothing) = Nothing
join (Just x) = x
a >>= f = join (fmap f a)
或者更明确地说:
Nothing >>= _ = Nothing
(Just x) >>= f = f x
State Monad用于同时修改某些共享状态-s->(a,s)的函数,因此>>=的参数为:a->s->(a,s)。这个名称有点用词不当,因为State实际上是用于状态修改功能,而不是用于状态——状态本身确实没有有趣的财产,它只是被改变了。
例如:
pop :: [a] -> (a , [a])
pop (h:t) = (h, t)
sPop = state pop -- The module for State exports no State constructor,
-- only a state function
push :: a -> [a] -> ((), [a])
push x l = ((), x : l)
sPush = state push
swap = do a <- sPop
b <- sPop
sPush a
sPush b
get2 = do a <- sPop
b <- sPop
return (a, b)
getswapped = do swap
get2
那么:
Main*> runState swap [1, 2, 3]
((), [2, 1, 3])
Main*> runState get2 [1, 2, 3]
((1, 2), [1, 2, 3]
Main*> runState (swap >> get2) [1, 2, 3]
((2, 1), [2, 1, 3])
Main*> runState getswapped [1, 2, 3]
((2, 1), [2, 1, 3])
也:
Prelude> runState (return 0) 1
(0, 1)
事实上,与一般人对蒙得斯的理解相反,他们与国家无关。Monads只是一种包装东西的方法,它提供了对包装好的东西进行操作而不展开的方法。
例如,您可以在Haskell中创建一个类型来包装另一个类型:
data Wrapped a = Wrap a
包装我们定义的东西
return :: a -> Wrapped a
return x = Wrap x
要在不展开的情况下执行操作,假设您有一个函数f::a->b,然后您可以执行此操作来提升该函数以作用于包装的值:
fmap :: (a -> b) -> (Wrapped a -> Wrapped b)
fmap f (Wrap x) = Wrap (f x)
这就是所有需要理解的。然而,事实证明,有一个更通用的函数来执行此提升,即bind:
bind :: (a -> Wrapped b) -> (Wrapped a -> Wrapped b)
bind f (Wrap x) = f x
bind可以比fmap做得更多,但反之亦然。实际上,fmap只能用绑定和返回来定义。因此,在定义monad时。。您给出它的类型(这里是Wrapped a),然后说明它的返回和绑定操作是如何工作的。
很酷的是,这是一个普遍的模式,它会在所有地方弹出,以纯方式封装状态只是其中之一。
有关如何使用monad来引入函数依赖关系,从而控制求值顺序(如Haskell的IO monad中所用)的好文章,请查看IOInside。
至于理解单子,不要太担心。读一些你觉得有趣的东西,如果你不马上理解,也不要担心。那就用Haskell这样的语言潜水吧。修道院就是这样一种东西,在那里,通过练习,理解慢慢地进入你的大脑,有一天你突然意识到你理解了它们。
monad是一个容器,但用于数据。一个特殊的容器。
所有容器都可以有开口、把手和喷口,但这些容器都保证有一定的开口、把手或喷口。
为什么?因为这些有保证的开口、把手和喷口对于以特定、常见的方式拾取和连接容器非常有用。
这使您可以选择不同的容器,而不必对它们了解太多。它还允许不同类型的容器轻松连接在一起。
monad是一种将共享共同上下文的计算组合在一起的方法。这就像建立一个管道网络。当构建网络时,没有数据流过它。但是当我用“bind”和“return”将所有位拼接在一起后,我调用类似runMyMonad monad数据的东西,数据流过管道。
monad实际上是“类型运算符”的一种形式。它将做三件事。首先,它会将一种类型的值“包装”(或以其他方式转换)为另一种类型(通常称为“一元类型”)。第二,它将使底层类型上的所有操作(或函数)在monadic类型上可用。最后,它将为将自身与另一个monad组合以生成复合monad提供支持。
“可能monad”本质上等同于Visual Basic/C#中的“可为null的类型”。它接受不可为null的类型“T”并将其转换为“可为null<T>”,然后定义所有二进制运算符在可为null><T>上的含义。
副作用也有类似的表现。创建了一个结构,该结构包含函数返回值旁边的副作用描述。当值在函数之间传递时,“提升”操作会复制副作用。
它们被称为“monad”,而不是更容易理解的“类型运算符”的名称,原因如下:
Monad对他们的行为有限制(详见定义)。这些限制,加上涉及三个运算,符合范畴理论中一个叫做monad的结构,这是一个模糊的数学分支。它们是由“纯”函数语言的支持者设计的纯函数语言的支持者,如模糊的数学分支由于数学晦涩难懂,而且monad与特定的编程风格相关,人们倾向于使用monad这个词作为一种秘密握手。正因为如此,没有人费心去投资一个更好的名字。