在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

让下面的“{|a|m}”表示一些一元数据。宣传以下内容的数据类型:

        (I got an a!)
          /        
    {| a |m}

函数f知道如何创建monad,只要它有一个a:

       (Hi f! What should I be?)
                      /
(You?. Oh, you'll be /
 that data there.)  /
 /                 /  (I got a b.)
|    --------------      |
|  /                     |
f a                      |
  |--later->       {| b |m}

在这里,我们看到函数f试图评估monad,但遭到了谴责。

(Hmm, how do I get that a?)
 o       (Get lost buddy.
o         Wrong type.)
o       /
f {| a |m}

函数f通过使用>>=找到提取a的方法。

        (Muaahaha. How you 
         like me now!?)       
    (Better.)      \
        |     (Give me that a.)
(Fine, well ok.)    |
         \          |
   {| a |m}   >>=   f

殊不知,monad和>>=勾结在一起。

            (Yah got an a for me?)       
(Yeah, but hey    | 
 listen. I got    |
 something to     |
 tell you first   |
 ...)   \        /
         |      /
   {| a |m}   >>=   f

但他们实际上在谈论什么?嗯,这取决于单子。仅仅抽象地谈论用处有限;你必须对特定的单子有一些经验,才能充实理解。

例如,数据类型Maybe

 data Maybe a = Nothing | Just a

有一个monad实例,其行为如下。。。

其中,如果情况只是

            (Yah what is it?)       
(... hm? Oh,      |
forget about it.  |
Hey a, yr up.)    | 
            \     |
(Evaluation  \    |
time already? \   |
Hows my hair?) |  |
      |       /   |
      |  (It's    |
      |  fine.)  /
      |   /     /    
   {| a |m}   >>=   f

但对于Nothing的情况

        (Yah what is it?)       
(... There      |
is no a. )      |
  |        (No a?)
(No a.)         |
  |        (Ok, I'll deal
  |         with this.)
   \            |
    \      (Hey f, get lost.) 
     \          |   ( Where's my a? 
      \         |     I evaluate a)
       \    (Not any more  |
        \    you don't.    |
         |   We're returning
         |   Nothing.)   /
         |      |       /
         |      |      /
         |      |     /
   {| a |m}   >>=   f      (I got a b.)
                    |  (This is   \
                    |   such a     \
                    |   sham.) o o  \
                    |               o|
                    |--later-> {| b |m}

因此,如果Maye monad实际上包含它所宣传的a,则它允许计算继续,但如果不包含,则中止计算。然而,结果仍然是一段单元数据,尽管不是f的输出。因此,Maye monad用于表示失败的上下文。

不同的单子叶植物表现不同。列表是具有一元实例的其他类型的数据。它们的行为如下:

(Ok, here's your a. Well, its
 a bunch of them, actually.)
  |
  |    (Thanks, no problem. Ok
  |     f, here you go, an a.)
  |       |
  |       |        (Thank's. See
  |       |         you later.)
  |  (Whoa. Hold up f,      |
  |   I got another         |
  |   a for you.)           |
  |       |      (What? No, sorry.
  |       |       Can't do it. I 
  |       |       have my hands full
  |       |       with all these "b" 
  |       |       I just made.) 
  |  (I'll hold those,      |
  |   you take this, and   /
  |   come back for more  /
  |   when you're done   / 
  |   and we'll do it   / 
  |   again.)          /
   \      |  ( Uhhh. All right.)
    \     |       /    
     \    \      /
{| a |m}   >>=  f  

在这种情况下,该函数知道如何从其输入生成列表,但不知道如何处理额外的输入和额外的列表。bind>>=,通过组合多个输出帮助f。我通过这个例子来说明,当>>=负责提取a时,它也可以访问f的最终绑定输出。事实上,除非它知道最终输出具有相同类型的上下文,否则它永远不会提取任何a。

还有其他monad用于表示不同的上下文。下面是一些其他特征。IO monad实际上没有a,但它认识一个人,会为你拿到a。州立大学圣莫尼德分校有一个秘密的圣莫尼德,它会把圣莫尼德藏在桌子下面给f,尽管f只是来要求一个a。

所有这一切的关键是,任何类型的数据如果声明自己是Monad,都会声明某种上下文来从Monad中提取值。从这一切中获得的巨大收益?好吧,用某种上下文来进行计算是很容易的。然而,当将多个上下文负载的计算串联在一起时,可能会变得混乱。monad操作负责解决上下文的交互,因此程序员不必这样做。

注意,>>=的使用通过从f中移除一些自主权来缓解混乱。也就是说,例如,在上面的Nothing情况下,f不再能够决定在Nothing的情况下要做什么;它被编码为>>=。这就是权衡。如果f有必要决定在Nothing的情况下做什么,那么f应该是从Maybe a到Maybe b的函数。在这种情况下,也许是monad是无关紧要的。

然而,请注意,有时数据类型不会导出它的构造函数(看看你的IO),如果我们想使用广告值,我们别无选择,只能使用它的monadic接口。

其他回答

[免责声明:我仍在努力完全了解monads。以下是我目前所了解的情况。如果这是错误的,希望有有知识的人会在地毯上给我打电话。]

Arnar写道:

Monads只是一种包装东西的方法,它提供了对包装好的东西进行操作而不展开的方法。

正是这样。想法是这样的:

你需要一些价值,并用一些附加信息来包装它。就像值是某种类型的(例如整数或字符串)一样,附加信息也是某种类型的。例如,该额外信息可能是“可能”或“IO”。然后,您有一些运算符,允许您在携带附加信息的同时对打包的数据进行操作。这些运算符使用附加信息来决定如何更改包装值上的操作行为。例如,Maybe Int可以是Just Int或Nothing。现在,如果您将Maybe Int添加到Maybe Int,则运算符将检查它们是否都是内部的Just Int,如果是,则将展开Int,将其传递给加法运算符,将生成的Int重新包装为新的Just Int(这是有效的Maybe Int),从而返回Maybe Int。但如果其中一个是内部的Nothing,则该运算符将立即返回Nothing,这也是一个有效的Maybe Int。这样,你可以假装Maybe Ints只是正常的数字,并对它们进行常规运算。如果你得到了一个Nothing,你的方程仍然会产生正确的结果——而不必到处乱检查Nothing。

但这个例子正是Maybe所发生的事情。如果额外的信息是IO,那么将调用为IO定义的特殊运算符,并且在执行添加之前,它可以执行完全不同的操作。(好吧,将两个IO Int加在一起可能是荒谬的——我还不确定。)

基本上,“monad”大致意思是“模式”。但是,您现在有了一种语言构造(语法和所有),可以将新模式声明为程序中的东西,而不是一本充满了非正式解释和专门命名的模式的书。(这里的不精确之处在于所有模式都必须遵循特定的形式,因此monad不像模式那样通用。但我认为这是大多数人都知道和理解的最接近的术语。)

这就是为什么人们觉得单子如此令人困惑:因为它们是一个通用的概念。问是什么使某物成为monad与问是什么让某物成为模式类似。

但是想想在语言中对模式的概念提供语法支持的含义:你不必阅读“四人帮”一书,记住特定模式的构造,只需编写一次代码,以不可知的通用方式实现这个模式,然后就完成了!然后,您可以重用此模式,如Visitor或Strategy或Façade等,只需用它装饰代码中的操作,而无需反复重新实现它!

所以,这就是为什么理解monad的人会发现它们如此有用的原因:这并不是知识势利者以理解为荣的象牙塔概念(好吧,当然也是如此,teehee),而是实际上让代码更简单。

世界需要的是另一篇monad博客文章,但我认为这对识别野外现存的monad很有用。

单子是分形

上面是一个叫做Sierpinski三角形的分形,这是我唯一记得画的分形。分形是与上述三角形相似的自相似结构,其中部分与整体相似(在这种情况下,正好是母三角形比例的一半)。单子是分形。给定一个一元数据结构,它的值可以组合成数据结构的另一个值。这就是为什么它对编程有用,这也是为什么它在许多情况下都会出现。

实际上,monad基本上允许回调嵌套(具有相互递归的线程状态(请忽略连字符))(以可组合(或可分解)的方式)(具有类型安全性(有时(取决于语言))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

例如,这不是单子:

//JavaScript is 'Practical'
var getAllThree = 
         bind(getFirst, function(first){  
  return bind(getSecond,function(second){  
  return bind(getThird, function(third){  
    var fancyResult = // And now make do fancy 
                      // with first, second,
                      // and third 
    return RETURN(fancyResult);
  });});});  

但是monad启用了这样的代码。monad实际上是一组类型:{bind,RETURN,也许其他我不认识的人…}。这本质上是无关紧要的,实际上是不切实际的。

所以现在我可以使用它:

var fancyResultReferenceOutsideOfMonad =  
  getAllThree(someKindOfInputAcceptableToOurGetFunctionsButProbablyAString);  

//Ignore this please, throwing away types, yay JavaScript:
//  RETURN = K
//  bind = \getterFn,cb -> 
//    \in -> let(result,newState) = getterFn(in) in cb(result)(newState)

或将其分解:

var getFirstTwo = 
           bind(getFirst, function(first){  
    return bind(getSecond,function(second){  
      var fancyResult2 = // And now make do fancy 
                         // with first and second
      return RETURN(fancyResult2);
    });})
  , getAllThree = 
           bind(getFirstTwo, function(fancyResult2){  
    return bind(getThird,    function(third){  
      var fancyResult3 = // And now make do fancy 
                         // with fancyResult2,
                         // and third 
      return RETURN(fancyResult3);
    });});

或者忽略某些结果:

var getFirstTwo = 
           bind(getFirst, function(first){  
    return bind(getSecond,function(second){  
      var fancyResult2 = // And now make do fancy 
                         // with first and second
      return RETURN(fancyResult2);
    });})
  , getAllThree = 
           bind(getFirstTwo, function(____dontCare____NotGonnaUse____){  
    return bind(getThird,    function(three){  
      var fancyResult3 = // And now make do fancy 
                         // with `three` only!
      return RETURN(fancyResult3);
    });});

或者从以下内容简化一个小案例:

var getFirstTwo = 
           bind(getFirst, function(first){  
    return bind(getSecond,function(second){  
      var fancyResult2 = // And now make do fancy 
                         // with first and second
      return RETURN(fancyResult2);
    });})
  , getAllThree = 
           bind(getFirstTwo, function(_){  
    return bind(getThird,    function(three){  
      return RETURN(three);
    });});

收件人(使用“正确身份”):

var getFirstTwo = 
           bind(getFirst, function(first){  
    return bind(getSecond,function(second){  
      var fancyResult2 = // And now make do fancy 
                         // with first and second
      return RETURN(fancyResult2);
    });})
  , getAllThree = 
           bind(getFirstTwo, function(_){  
    return getThird;
    });

或者把它们挤在一起:

var getAllThree = 
           bind(getFirst, function(first_dontCareNow){  
    return bind(getSecond,function(second_dontCareNow){  
    return getThird;
    });});

这些能力的实用性并没有真正显现出来,或者变得清晰,直到你试图解决真正的棘手问题例如解析或模块/ajax/资源加载。

你能想象成千上万行indexOf/subString逻辑吗?如果频繁的解析步骤包含在小函数中呢?像字符、空格、大写字符或数字这样的函数?如果这些函数在回调中给出了结果,而不必与Regex集团和争论发生冲突?如果它们的组成/分解被很好地理解了呢?这样你就可以从下往上构建大型解析器了吗?

因此,管理嵌套回调范围的能力非常实用,尤其是在使用monadic解析器组合器库时。(也就是说,根据我的经验)

不要挂断电话:-分类理论-可能是月-莫纳德定律-哈斯克尔- !!!!

公主对F#计算表达式的解释帮助了我,尽管我仍然不能说我真的理解了。

编辑:这个系列-用javascript解释monad-对我来说是一个“打破平衡”的系列。

http://blog.jcoglan.com/2011/03/05/translation-from-haskell-to-javascript-of-selected-portions-of-the-best-introduction-to-monads-ive-ever-read/http://blog.jcoglan.com/2011/03/06/monad-syntax-for-javascript/http://blog.jcoglan.com/2011/03/11/promises-are-the-monad-of-asynchronous-programming/

我认为理解单子是一件让你毛骨悚然的事。从这个意义上说,尽可能多地阅读“教程”是一个好主意,但通常奇怪的东西(不熟悉的语言或语法)会让你的大脑无法专注于基本内容。

有些事情我很难理解:

基于规则的解释对我来说从未奏效,因为大多数实际示例实际上需要的不仅仅是返回/绑定。此外,称之为规则也无济于事。这更像是“有些东西有共同点,我们把它们称为‘单子’,把共同点称为‘规则’”。Return(a->M<a>)和Bind(M<a>->(a->M<b>)->M<b>)很好,但我永远无法理解Bind如何从M<a>中提取a,以便将其传递给a->M<b>。我不认为我在任何地方读过(也许这对其他人来说都很明显),Return(M<a>->a)的反面必须存在于monad内部,它只是不需要暴露。

如果你要求对如此抽象的东西做出简洁、实用的解释,那么你只能希望得到一个抽象的答案:

a -> b

是表示从as到bs的计算的一种方式。您可以将计算链接起来,也可以将它们组合在一起:

(b -> c) -> (a -> b) -> (a -> c)

更复杂的计算需要更复杂的类型,例如:

a -> f b

是从as到bs到fs的计算类型。您还可以编写它们:

(b -> f c) -> (a -> f b) -> (a -> f c)

事实证明,这种模式无处不在,并且与上面的第一个组合具有相同的财产(结合性、右-和左-同一性)。

人们必须给这个模式起一个名字,但如果知道第一个组合被正式描述为半群体,这会有帮助吗?

“单子和圆括号一样有趣和重要”(奥列格·基斯廖夫)