在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

(另请参见“什么是monad?”中的答案)

蒙纳斯的一个很好的动机是西格菲(丹·皮波尼)的《你本可以发明蒙纳斯!(也许你已经有了)。还有很多其他monad教程,其中许多都试图使用各种类比以“简单的术语”来解释monad:这就是monad教程谬论;避开它们。

正如MacIver博士在《告诉我们为什么你的语言很糟糕》中所说:所以,我讨厌Haskell的事情:让我们从显而易见的开始。Monad教程。不,不是单子。特别是教程。他们没完没了,夸夸其谈,亲爱的上帝,他们太乏味了。此外,我从未见过任何令人信服的证据表明它们确实有帮助。阅读类定义,编写一些代码,忘掉这个可怕的名字。

你说你懂“也许莫纳德”吗?很好,你在路上了。只要开始使用其他monad,迟早你会了解monad的一般含义。

(如果你以数学为导向,你可能想忽略几十个教程,学习定义,或遵循类别理论的讲座:)定义的主要部分是Monad M包含一个“类型构造器”,为每个现有类型“T”定义一个新类型“M T”,以及在“常规”类型和“M”类型之间来回移动的一些方式。]

同样,令人惊讶的是,对monad最好的介绍之一实际上是介绍monad的早期学术论文之一,Philip Wadler的Monad for functional programming。它实际上有一些实用的、非平凡的激励性例子,与许多人工教程不同。

其他回答

monad是用于封装状态变化的对象的东西。在不允许您具有可修改状态的语言(例如,Haskell)中最常遇到这种情况。

例如文件I/O。

您将能够使用文件I/O的monad来将不断变化的状态本质与使用monad的代码隔离开来。Monad内部的代码可以有效地忽略Monad外部世界的变化状态,这使您更容易理解程序的整体效果。

但是,你本可以发明蒙纳斯!

sigfpe说:但所有这些都将单子介绍为需要解释的深奥的东西。但我想说的是,它们一点都不深奥。事实上,面对函数式编程中的各种问题,你会不可避免地被引向某些解决方案,所有这些都是单子的例子。事实上,如果你还没有发明,我希望你现在就发明它们。这是注意到所有这些解决方案实际上都是变相的相同解决方案的一小步。读完这篇文章后,你可能会更好地理解单子上的其他文档,因为你会发现你所看到的一切都是你已经发明的。monads试图解决的许多问题都与副作用有关。因此,我们将从它们开始。(请注意,monad让您做的不仅仅是处理副作用,特别是许多类型的容器对象都可以被视为monad。monad的一些介绍发现,很难协调monad的这两种不同用法,并且只关注其中一种。)在命令式编程语言(如C++)中,函数的行为与数学函数完全不同。例如,假设我们有一个C++函数,它接受一个浮点参数并返回一个浮点结果。从表面上看,它可能有点像一个将实数映射到实数的数学函数,但C++函数可以做的不仅仅是返回一个依赖于其参数的数字。它可以读取和写入全局变量的值,也可以将输出写入屏幕并接收用户的输入。然而,在纯函数语言中,函数只能读取在其参数中提供给它的内容,而它对世界产生影响的唯一方式是通过它返回的值。

除了上面出色的答案之外,让我为您提供以下文章的链接(由Patrick Thomson撰写),该文章通过将概念与JavaScript库jQuery(及其使用“方法链接”来操作DOM的方式)相关联来解释monads:jQuery是Monad

jQuery文档本身并没有提到术语“monad”,而是谈到了可能更熟悉的“构建器模式”。这并不能改变一个事实,那就是你有一个合适的monad,也许你甚至没有意识到它。

在了解这些信息时,对我帮助最大的两件事是:

第8章,“函数解析器”,摘自Graham Hutton的《Haskell编程》一书。实际上,这根本没有提到monad,但如果您能够通读第章并真正理解其中的所有内容,特别是如何评估一系列绑定操作,您将了解monad的内部结构。预计这需要多次尝试。

关于修道院的教程。这提供了几个很好的例子来说明它们的用途,我不得不说,我在Appendex中的类比是为我工作的。

如果你要求对如此抽象的东西做出简洁、实用的解释,那么你只能希望得到一个抽象的答案:

a -> b

是表示从as到bs的计算的一种方式。您可以将计算链接起来,也可以将它们组合在一起:

(b -> c) -> (a -> b) -> (a -> c)

更复杂的计算需要更复杂的类型,例如:

a -> f b

是从as到bs到fs的计算类型。您还可以编写它们:

(b -> f c) -> (a -> f b) -> (a -> f c)

事实证明,这种模式无处不在,并且与上面的第一个组合具有相同的财产(结合性、右-和左-同一性)。

人们必须给这个模式起一个名字,但如果知道第一个组合被正式描述为半群体,这会有帮助吗?

“单子和圆括号一样有趣和重要”(奥列格·基斯廖夫)