在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
当前回答
在Scala的上下文中,您会发现以下是最简单的定义。基本上,flatMap(或bind)是“关联”的,并且存在一个标识。
trait M[+A] {
def flatMap[B](f: A => M[B]): M[B] // AKA bind
// Pseudo Meta Code
def isValidMonad: Boolean = {
// for every parameter the following holds
def isAssociativeOn[X, Y, Z](x: M[X], f: X => M[Y], g: Y => M[Z]): Boolean =
x.flatMap(f).flatMap(g) == x.flatMap(f(_).flatMap(g))
// for every parameter X and x, there exists an id
// such that the following holds
def isAnIdentity[X](x: M[X], id: X => M[X]): Boolean =
x.flatMap(id) == x
}
}
E.g.
// These could be any functions
val f: Int => Option[String] = number => if (number == 7) Some("hello") else None
val g: String => Option[Double] = string => Some(3.14)
// Observe these are identical. Since Option is a Monad
// they will always be identical no matter what the functions are
scala> Some(7).flatMap(f).flatMap(g)
res211: Option[Double] = Some(3.14)
scala> Some(7).flatMap(f(_).flatMap(g))
res212: Option[Double] = Some(3.14)
// As Option is a Monad, there exists an identity:
val id: Int => Option[Int] = x => Some(x)
// Observe these are identical
scala> Some(7).flatMap(id)
res213: Option[Int] = Some(7)
scala> Some(7)
res214: Some[Int] = Some(7)
注:严格地说,函数编程中的Monad的定义与范畴理论中的Monard的定义不同,后者是按映射和展平的顺序定义的。尽管它们在某些映射下是等价的。这个演示非常好:http://www.slideshare.net/samthemonad/monad-presentation-scala-as-a-category
其他回答
在Coursera“反应式编程原理”培训中,Erik Meier将其描述为:
"Monads are return types that guide you through the happy path." -Erik Meijer
如果你要求对如此抽象的东西做出简洁、实用的解释,那么你只能希望得到一个抽象的答案:
a -> b
是表示从as到bs的计算的一种方式。您可以将计算链接起来,也可以将它们组合在一起:
(b -> c) -> (a -> b) -> (a -> c)
更复杂的计算需要更复杂的类型,例如:
a -> f b
是从as到bs到fs的计算类型。您还可以编写它们:
(b -> f c) -> (a -> f b) -> (a -> f c)
事实证明,这种模式无处不在,并且与上面的第一个组合具有相同的财产(结合性、右-和左-同一性)。
人们必须给这个模式起一个名字,但如果知道第一个组合被正式描述为半群体,这会有帮助吗?
“单子和圆括号一样有趣和重要”(奥列格·基斯廖夫)
你应该首先了解函子是什么。在此之前,先了解高阶函数。
高阶函数只是一个以函数为自变量的函数。
函子是任何类型构造T,其中存在一个高阶函数,称之为map,它将类型为A->b的函数(给定任意两个类型A和b)转换为函数Ta->Tb。该map函数还必须遵守恒等式和复合法则,以便以下表达式对所有p和q返回true(Haskell表示法):
map id = id
map (p . q) = map p . map q
例如,名为List的类型构造函数是一个函子,如果它配备了一个类型为(a->b)->Lista->Listb的函数,该函数遵守上述定律。唯一实际的实施是显而易见的。生成的Lista->Listb函数在给定列表上迭代,为每个元素调用(a->b)函数,并返回结果列表。
monad本质上只是一个函子T,它有两个额外的方法,类型为T(T A)->T A的join和类型为A->T A的unit(有时称为return、fork或pure)。对于Haskell中的列表:
join :: [[a]] -> [a]
pure :: a -> [a]
为什么有用?因为例如,您可以使用返回列表的函数映射列表。Join获取生成的列表列表并将它们连接起来。列表是monad,因为这是可能的。
您可以编写一个函数,先映射,然后连接。此函数称为bind或flatMap,或(>>=)或(=<<)。这通常是Haskell中给出monad实例的方式。
monad必须满足某些定律,即联接必须是关联的。这意味着,如果您的值x类型为[[a]]],那么join(join x)应该等于join(map joinx)。纯必须是联接的标识,这样联接(纯x)==x。
如果我理解正确的话,IEnumerable是从monad派生出来的。我想知道,对于我们这些来自C#世界的人来说,这可能是一个有趣的视角吗?
值得一提的是,这里有一些帮助我的教程链接(不,我还不知道单子是什么)。
http://osteele.com/archives/2007/12/overloading-semicolonhttp://spbhug.folding-maps.org/wiki/MonadsEnhttp://www.loria.fr/~kow/monads/
世界需要的是另一篇monad博客文章,但我认为这对识别野外现存的monad很有用。
单子是分形
上面是一个叫做Sierpinski三角形的分形,这是我唯一记得画的分形。分形是与上述三角形相似的自相似结构,其中部分与整体相似(在这种情况下,正好是母三角形比例的一半)。单子是分形。给定一个一元数据结构,它的值可以组合成数据结构的另一个值。这就是为什么它对编程有用,这也是为什么它在许多情况下都会出现。