在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
当前回答
你应该首先了解函子是什么。在此之前,先了解高阶函数。
高阶函数只是一个以函数为自变量的函数。
函子是任何类型构造T,其中存在一个高阶函数,称之为map,它将类型为A->b的函数(给定任意两个类型A和b)转换为函数Ta->Tb。该map函数还必须遵守恒等式和复合法则,以便以下表达式对所有p和q返回true(Haskell表示法):
map id = id
map (p . q) = map p . map q
例如,名为List的类型构造函数是一个函子,如果它配备了一个类型为(a->b)->Lista->Listb的函数,该函数遵守上述定律。唯一实际的实施是显而易见的。生成的Lista->Listb函数在给定列表上迭代,为每个元素调用(a->b)函数,并返回结果列表。
monad本质上只是一个函子T,它有两个额外的方法,类型为T(T A)->T A的join和类型为A->T A的unit(有时称为return、fork或pure)。对于Haskell中的列表:
join :: [[a]] -> [a]
pure :: a -> [a]
为什么有用?因为例如,您可以使用返回列表的函数映射列表。Join获取生成的列表列表并将它们连接起来。列表是monad,因为这是可能的。
您可以编写一个函数,先映射,然后连接。此函数称为bind或flatMap,或(>>=)或(=<<)。这通常是Haskell中给出monad实例的方式。
monad必须满足某些定律,即联接必须是关联的。这意味着,如果您的值x类型为[[a]]],那么join(join x)应该等于join(map joinx)。纯必须是联接的标识,这样联接(纯x)==x。
其他回答
但是,你本可以发明蒙纳斯!
sigfpe说:但所有这些都将单子介绍为需要解释的深奥的东西。但我想说的是,它们一点都不深奥。事实上,面对函数式编程中的各种问题,你会不可避免地被引向某些解决方案,所有这些都是单子的例子。事实上,如果你还没有发明,我希望你现在就发明它们。这是注意到所有这些解决方案实际上都是变相的相同解决方案的一小步。读完这篇文章后,你可能会更好地理解单子上的其他文档,因为你会发现你所看到的一切都是你已经发明的。monads试图解决的许多问题都与副作用有关。因此,我们将从它们开始。(请注意,monad让您做的不仅仅是处理副作用,特别是许多类型的容器对象都可以被视为monad。monad的一些介绍发现,很难协调monad的这两种不同用法,并且只关注其中一种。)在命令式编程语言(如C++)中,函数的行为与数学函数完全不同。例如,假设我们有一个C++函数,它接受一个浮点参数并返回一个浮点结果。从表面上看,它可能有点像一个将实数映射到实数的数学函数,但C++函数可以做的不仅仅是返回一个依赖于其参数的数字。它可以读取和写入全局变量的值,也可以将输出写入屏幕并接收用户的输入。然而,在纯函数语言中,函数只能读取在其参数中提供给它的内容,而它对世界产生影响的唯一方式是通过它返回的值。
如果我理解正确的话,IEnumerable是从monad派生出来的。我想知道,对于我们这些来自C#世界的人来说,这可能是一个有趣的视角吗?
值得一提的是,这里有一些帮助我的教程链接(不,我还不知道单子是什么)。
http://osteele.com/archives/2007/12/overloading-semicolonhttp://spbhug.folding-maps.org/wiki/MonadsEnhttp://www.loria.fr/~kow/monads/
世界需要的是另一篇monad博客文章,但我认为这对识别野外现存的monad很有用。
单子是分形
上面是一个叫做Sierpinski三角形的分形,这是我唯一记得画的分形。分形是与上述三角形相似的自相似结构,其中部分与整体相似(在这种情况下,正好是母三角形比例的一半)。单子是分形。给定一个一元数据结构,它的值可以组合成数据结构的另一个值。这就是为什么它对编程有用,这也是为什么它在许多情况下都会出现。
解释monad似乎就像解释控制流语句一样。想象一下,一个非程序员要求你解释它们?
你可以给他们一个涉及理论的解释——布尔逻辑、寄存器值、指针、堆栈和框架。但那太疯狂了。
你可以用语法来解释它们。基本上,C中的所有控制流语句都有大括号,您可以通过它们相对于括号的位置来区分条件和条件代码。这可能更疯狂。
或者,您也可以解释循环、if语句、例程、子例程以及可能的协例程。
Monad可以取代相当多的编程技术。语言中有一种特定的语法支持它们,还有一些关于它们的理论。
它们也是函数式程序员使用命令式代码而不承认它的一种方式,但这并不是他们唯一的用途。
数学思维
简而言之:用于组合计算的代数结构。
返回数据:创建一个只需在monad世界中生成数据的计算。
(return data)>>=(return func):第二个参数接受第一个参数作为数据生成器,并创建连接它们的新计算。
您可以认为(>>=)和return本身不会进行任何计算。他们只是简单地组合和创建计算。
当且仅当main触发时,任何monad计算都将被计算。